Preliminary Palynostratigraphic Data on the Middle Albian-Lower Cenomanian of the Tarfaya Basin, Southwest Morocco

Abstract

The Tarfaya-Laayoune-Boujdour basin is of great interest to oil exploration; on this aspect, there has been exploration by the Moroccan National Office of Hydrocarbons and Mining, which has shown indices of oil and/or gas recorded in most wells drilled in the Moroccan Atlantic margin. FD-1 well, object of this study, is one of these wells located in the offshore Tarfaya-Laayoune-Boujdour basin. A palynological examination of the processed samples revealed the existence of organic palynomorphs, well conserved and rich in dinoflagellate cysts. The latter are composed of worldwide marker taxa of high stratigraphic resolutions. Thus, the middle upper Albian (3408 - 3408.5 m) is determined by the presence of Cribroperidinium tensiftense, Tehamadinium coummia, Spiniferella cornuta, Chichaouadinium vestitum, Dinopterygium alatum and Litosphaeridium arundum. The upper Albian (3406.5 - 3408 m) is characterized by the FOs of marker taxa: Cyclonephelium chabaca, Cribroperidinium auctificum and Chichaouadinium vestitum. Lastly, the upper Albian-lower Cenomanian transition is defined between 3404 m and 3406.50 m, as suggested by the FOs of Chichaouadinium boydii, Dinopterygium tuberculatum, Sepispinula ancorifera, Litosphaeridium conispinum, Prolixosphaeridium conulum and Xenascus ceratioides.

Share and Cite:

Chafai, K. , Hssaida, T. , Maatouf, W. , Yousfi, M. , Chakir, S. , Jaydawi, S. and Khaffou, H. (2024) Preliminary Palynostratigraphic Data on the Middle Albian-Lower Cenomanian of the Tarfaya Basin, Southwest Morocco. Open Journal of Geology, 14, 548-568. doi: 10.4236/ojg.2024.144022.

1. Introduction

The Northwestern African continental margin, particularly the Moroccan Atlantic margin, is among the oldest passive continental margins [1] . They have been of particular interest for oil exploration, as oil and/or gas shows have been recorded in most of the drilled wells (unpublished reports, ONHYM, 1999, 2000). The sedimentary deposits in the Tarfaya-Laayoune-Boujdour basin are Mesozoic and Cenozoic, overlying crystalline rocks of Proterozoic and Paleozoic age [2] [3] [4] .

The geological evolution of the Tarfaya, Laayoune, Boujdour sedimentary basin is linked with the geological history of the African craton and the opening of the Atlantic. This opening resulted in a major accident (the Zemmour fault, following the separation to the East of the Anti-Atlas massif and the Tindouf basin). On the other hand, it was led by the establishment of sediments rich in organic matter, which allowed the installation of many oil basins, precisely in the estuaries, at larger depths of burial.

To achieve a better assessment of the sedimentary formations making up a petroleum system, several sedimentological, biostratigraphic, geochemical, geophysical and micropalaeontological approaches have been carried out since the 90’s [5] [6] [7] [8] [9] .

Albian-Cenomanian palynology is poorly developed on the Moroccan Atlantic margin, except for the work of [10] and [11] . On the other hand, previous work concerning this interval is well developed in the northern and central Atlantic [12] - [17] .

Palynostratigraphic studies realized in the Tarfaya-Laayoune-Boujdour basin are rare, punctual and limited to subsurface data. Those carried out on the Upper Cretaceous deposits include the Cenomanian-Turonian [6] [7] and the Upper Cenomanian-Coniacian [8] . However, studies on the upper Albian-lower Cenomanian transition are rare, which makes this work important and complementary. The identification of stratigraphic taxa importance from this study will permit establishing a refined and precise biostratigraphic data of the Albian-Cenomanian interval in Moroccan basins, particularly in the Tarfaya_Laayoune_Boujdour basin.

The present work was proposed by the National Office of Hydrocarbons and Mining, it aims to create a coherent biostratigraphic framework of the 3404 m to 3408.5 m interval from FD.1 well located in the offshore of the Tarfaya_Laayoune_Boujdour basin.

2. Geographic and Geological Setting for Southwest Morocco

The Tarfaya Laayoune Boujdour basin in Southwest Morocco stretches along the coast in the south of Morocco between 28˚N and 24˚S. Its depending on the definition of its southern margin and whether its offshore extent is taken into account. It is bounded to the south by the Mauritanides, to the north by the Anti-Atlas, to the east by the Reguibats and to the west by the Atlantic Ocean (Figure 1). Extending parallel to the coast in a NNE. SSW, most of it lies in the

Figure 1. Geological maps of the Moroccan Sahara showing the location of the studied Well [FD-1], after [37] .

Moroccan Sahara. It has been the subject of several regional geological studies. These include: [18] - [30] .

The evolution of the Tarfaya, Laayoune, Boujdour basin is intimately associated to the geological history of the African craton and the opening of the Atlantic [21] , with the transition from a rift to a marginal basin. This basin was formed during the Mesozoic and Cenozoic in the marine direction of the stable West African craton [31] . The basement is made up of folded Precambrian and Paleozoic rocks unconformably overlain by Mesozoic and Cenozoic sediments. Detailed and comprehensive geological descriptions of this region have been published by: [32] and [26] .

In response to early rifting of the central and southern North Atlantic, and a marine incursion into this rift system during the Triassic, a major phase of evaporite deposition occurred in this region [19] [33] and [31] . Today, this salt province extends along the northwest coast of Morocco, and salt diapirs are important offshore structural features. The Jurassic was initiated by a major marine transgression and was characterized by high subsidence rates, generally offset by thick terrigenous clastic sequences and carbonate platform accumulations in the shallow-water plateau zone. A thick Lower Cretaceous (Aptian-Albian) deltaic sequence accumulated during and after a major global Valanginian regression with sediments probably originating from the Tindouf basin and the African craton to the southeast [34] .

According to Ratschiller [35] , a series of major transgressive cycles in the Upper Cretaceous (Albian/Cenomanian, Cenomanian/Turonian, Santonian/Campanian) caused repeated and extensive flooding of the continental margin of NW Africa and initiated the deposition of over 800 m of laminated biogenic sediments of Cenomanian-Santonian age in the Tarfaya-Laayoune-Boujdour basin. These sediments consist mainly of calcareous nannoplankton, dispersed biogenic silica and planktonic foraminifera, and are high in marine organic matter. Sedimentation rates exceeded 10 cm/ky. The sediments were deposited in a nutrient-rich environment in which an upwelling system developed on an open plateau [36] . During the Miocene, the Upper Cretaceous succession was eroded and the deposition of the relatively thin Moghrebian formation took place.

3. Materials and Methods

3.1. Material

A total of 10 cutting samples were examined from FD-1 well. The latter is located 25 km from NNW of Tan Tan and 200 km SW of Agadir, offshore Morocco (Lat. 29˚29'53.008"N, Long. 11˚29'47.711"W) (Figure 1).

The interval between 3404 m and 3408.5 m was analyzed to investigate palynological analyses. This interval is predominated by grey to grey-brown sub blocky calcareous claystone. The general preservation of organic matter is good and palynomorphs are therefore abundant.

The latter consists of spores, pollen grain and acritarchs. Dinoflagellate cysts were also available within the studied material in high percentages in comparison with the other palynomorphs. Consequently, age assessment in this work is primarily based on ranges of dinoflagellate cysts.

3.2. Method

The ten samples were made using standard palynological methods [38] . All preparations were carried out in the laboratory of palynology, FSBM, Hassan II University, Casablanca, Morocco. The first step corresponds in removing contaminants by washing the samples with distilled water and then drying in an oven at 50˚C. The acid attack involves an initial immersion of 40 gramme of rock in HCl (37%) followed by digestion in hot HF (40%) during 48 h and further immersion in hot HCl (20%) to dissolve the carbonate and siliceous contents. After successive washes, the residue is sieved through 15 µm filter mesh to remove some of the fine material, and stained with safranin (C20H19ClN4) to enhance the colors of the palynomorphs. Palynological material is mounted on microscope slides using glycerin jelly. Two slides from each sample were routinely examined under a Leica transmitted light microscope equipped with a digital camera (Leica DFC450C). The palynological slides are stored in the laboratory of palynology, FSBM (Hassan II University, Casablanca, Morocco) and observed with a light microscope (Leica) Dinoflagellate cyst nomenclature is based on Dinoflaj 3, [39] and [40] . All dinoflagellate cyst taxa identified in this study are listed alphabetically in the species list (Appendix A) and their distribution in the studied well is plotted in Table 1.

4. Palynostratigraphic Results and Discusion

Palynological analysis of the organic matter contained in the studied samples revealed the presence of preserved, diverse and significant palynomorphs dominated by dinoflagellate cysts (81.97%) and sporomorphs (22%). Other marine palynomorphs (foraminiferal test linings, acritarchs and algae) (Plate 1) are rather rare and do not exceed (4.07%) (Figure 2). The vertical stratigraphic distributions of palynomorphs are shown in Table 1. Thus, some forms of dinocysts have been represented in (Plates 2-5).

Age assessment of the studied interval from FD-1 well is based on the first occurrences (Fos) and last occurrences (Los) of marker dinoflagellate cyst species, as well as on the presence of significant species associated with their acme. The listed associations are compared to the upper Albian-lower Cenomanian

Figure 2. Percentages: dinoflagellate cysts, sporomorphs, foraminifera-Acritarchs and algae, in the studied interval from FD-1 well.

Plate 1. Photo micrographs of palynomorphs from FD-1 well. Scale bar in Fig. 5 represents 20 µm: 1: Classopollis sp. (Sample 3405, slide 1, EF X41.); 2, 3: Gnetaceapolenites jansonii (2 Sample 3408, slide 2, EF M32/3. 3 Sample 3404, slide 2, EF U 47/1.); 4, 5,6: Elaterosporites sp. (4: Sample 3407, 5: Sample 3404, 6 Sample 3407); 7, 10: Phytoclast (Sample 3407, slide 1, EF L33/L34.); 8: Acritarches (Sample 3408, slide 1, EF H44/3.); 9: Leosphaeridia (Sample 3406.5, slide 2, EF R39.); 11: Kiokansium spp. (Sample 3404, slide 1, EF U44); 12: Moa (amorphous organic matter) (Sample 3407, slide 2, EF O40/2).

Plate 2. Dinoflagellate cysts recovered from the FD-1 well. Scale bar in Fig. 3b. represents 20 µm for all specimens: 1a,b: Tehamadinium coummia (Below, 1981a) Jan du Chêne et al., 1986b. (Sample 3408,5, slide 2, EF G50/1.); 2: Spiniferites ramosus (Ehrenberg, 1837b) Mantell, 1854. (Sample 3407, slide 1, EF L41); 3 a,b: Oligosphaeridium albertense (Pocock, 1962) Davey and Williams, 1969. (Sample 3404,5, slide 3, EF U37/4); 4: Oligosphaeridium totum (Brideaux, 1971). (Sample 3405, slide 1, EF V41/2); 5: Oligosphaeridium complex (White, 1842) Davey and Williams, 1966b. (Sample 3405.5, slide 2, EF O43/2). 6 a,b: Coronifera spp. (Sample 3405, slide 2, EF U 43/1.); 7: Callaiosphaeridium spp. (Davey and Williams, 1966b). (Sample 3404.4, slide 1, EF P25.); 8 a,b: Kleithriasphaeridium eoinodes (Eisenack, 1958a). Sarjeant, 1985a (Sample 3404, slide 2, EF X50/1).

Plate 3. Dinoflagellate cysts recovered from the FD-1 well. Scale bar in Fig. 3b. represents 20 µm for all specimens: 1; 2a, b: Cribroperidinium tensiftense (Below, 1981a). (1: Sample 3405, slide 1, EF O29/2. 2a, b: Sample 3407.5, slide 1, EF N45/4.); 3a, b; 4: Cribroperidinium intricatum (Davey, 1969a). (3a, b: Sample 3404,5, slide 2, EF U25. 4: Sample 3407,5, slide 2, EF J55); 5a, b: Cribroperidinium edwardsii (Cookson and Eisenack, 1958) Davey, 1969a. (Sample 3408, slide 2, EF O33/1); 6: Cribroperidinium spp. (Neale and Sarjeant, 1962) Davey, 1969a (Sample 3404, slide 4, EF U27); 7 a, b: Odontochitina operculate (Wetzel, 1933a) Deflandre and Cookson, 1955. (Sample 3408.5, slide 3, EF E29/E30); 8: Odontochitina costata (Alberti, 1961) Clarke and Verdier, 1967 (Sample 3404, 5, slide 2, EF T50).

Plate 4. Dinoflagellate cysts recovered from the FD-1 well. Scale bar in Fig. 3. represents 20 µm for all specimens: 1 a,b: Florentinia mantellii (Davey and Williams, 1966b) Davey and Verdier, 1973. (Sample 3404, slide 1, EF O36/O37); 2 a,b: Florentinia laciniata (Davey and Verdier, 1973). (Sample 3405, slide 1, EF P54/2.); 3: Exochosphaeridium phragmites (Davey et al., 1966). (Sample 3406.5, slide 1, EF K33/K34); 4 a,b, c: Pervosphaeridium cenomaniense (Norvick, 1976) Below, 1982c. (Sample 3407, slide 2, EF V42/4); 5 a,b: Pervosphaeridium spp. (Yun Hyesu, 1981). (Sample 3406, slide3, EF T35/4); 6 a,b: Sepispinula ancorifera (Cookson and Eisenack, 1960a) Islam, 1993. (Sample 3404, slide 1, EF M15/4).

Plate 5. Dinoflagellate cysts recovered from the FD-1 well. Scale bar in Fig. 3b. represents 20 µm for all specimens: 1 a,b: Tenua hystrix (Eisenack, 1958a) Sarjeant, 1985a. (Sample 3404,5, slide 1, EF T46/2); 2: Circulodinium distinctum (Deflandre and Cookson, 1955) Jansonius, 1986. (Sample 3408.5, slide 1, EF Y45); 3 a,b: Circulodinium distinctum (Deflandre and Cookson, 1955) Jansonius, 1986. (Sample 3408, slide 3, EF C35/3); 4: Xenascus spp. Cookson and Eisenack, 1969 (Sample 3406.5, slide 2, EF Q28/1. slide 1, EF H37); 5: Cf. Kiokansium unituberculatum (Tasch et al., 1964) Stover and Evitt, 1978. (Sample 3407.5, slide 1, EF W44/2); 6: Kiokansium spp. (Stover and Evitt, 1978). (Sample 3404, slide 2, EF I47/1. slide 2, EF R50); 7: Ovoidinium implanum (Sample 3406, slide 1, EF V29)

assemblages from contemporary basins in the Atlantic and Tethyan domains (e.g. [10] - [15] [17] [41] - [55] ).

4.1. Mid to upper Albian (3408 - 3408.50 m)

The dinoflagellate cyst association recorded at this depth includes: Litosphaeridium arundum, Chichaouadinium vestitum, Tehamadinium coummia (Plate 2),

Table 1. Vertical distribution of the recorded dinoflagellate cysts in the FD-1 Well, Tarfaya-Laayoune-Boujdour basin, Morocco.

Dinopterygium alatum, Cribroperidinium tensiftense (Plate 3), Spiniferella cornuta and Tehamadinium coummia is known to occur in the middle of the Albian, characterizing the Tehamadinium coummia zone defined in Italy by the FO of Tehamadinium coummia at the base of the zone and the LO of Litosphaeridium arundum. This taxon has also been recorded in the middle and upper Albian period of the EGA.1 well [Agadir basin, SW Morocco] [11] . The Litosphaeridium arundum zone is defined by the FO of Litosphaeridium arundum at its base and the FO of Tehamadinium mazaganense at the top, and marks the middle to upper Albian [56] . In EGA.1 well, the LO of Litosphaeridium arundum coincides with the first appearance [FO] of Tehamadinium mazaganense. In France, it is a marker of the mid- to Upper Albian [43] , middle Albian in DSDP Hole 400 in Australia [44] and upper Albian in the offshore Moroccan site DSDP 545 [10] .

From the above, the depths interval between 3408 m and 3408.50 m could correspond to the middle Albian-upper Albian transition.

4.2. Upper Albian (3406.5 - 3408 m)

Marker taxa occurring throughout this interval include Cyclonephelium chabaca, Cribroperidinium auctificum and Chichaouadinium boydii.

The recognition of the upper Albian is based on the FOs of Cyclonephelium chabaca at the base of this interval, followed by the successive FOs of Cribroperidinium auctificum (depth 3407.50 m) and Chichaouadinium vestitum (depth 3407 m). Cyclonephelium chabaca is considered as a stratigraphic marker of the upper Albian in the Atlantic and Tethyan domains, such as in Libya [57] [58] , in DSDP 627B and DSDP 635B in the Bahamas [13] and in DSDP 547A and DSDP 545 [10] , as well as in EGA.1 well in Morocco [11] . The FO of Cribroperidinium auctificum is recorded in the Upper Albian in Italy [56] and in Morocco in the Agadir basin (EGA.1 well) [11] . The upper part of this interval is defined by the FOs of Chichaouadinium boydii, Litosphaeridium conispinum, Dinopterygium tuberculatum, Sepispinula ancorifera and Xenascus ceratioides. All these findings allowed us to assign the interval between 3406.5 m and 3408 m to the upper Albian.

4.3. Upper Albian_Lower Cenomanian (3404 - 3406.50 m)

In this interval, The Fos of the Sepispinula ancorifera (Plate 4), Chichaouadinium boydii, Litosphaeridium conispinum, Dinopterygium tuberculatum, Prolixosphaeridium conulum and Xenascus ceratioides are recorded at sample 3406.50 m. These taxa have been observed in association with Pervosphaeridium cenomaniense and Cribroperidinium intricatum (Plate 3). Pervosphaeridium cenomaniense (Plate 4) characterize the middle Cretaceous of the offshore Camp Basin, southeastern Brazil [59] and the upper Albian-middle Cenomanian of Atlantic Ocean [60] . Australia’s upper Albian-lower Cenomanian transition is indicated by Sepispinula ancorifera [61] . Litosphaeridium conispinum characterizes the Upper Albian-Lower Cenomanian transition in EGA.1 well, southwest of Morocco [11] and the Upper Albian in DSDP Hole 545 in the offshore of Morocco [10] . It also marks the upper Albian-lower Cenomanian transition in France [62] and in the DSDP Hole 635 on the Atlantic Ocean [13] . Other taxa also occur in this interval and show stratigraphic interest, Xenascus ceratioides is a good marker of the Upper Albian-Lower Cenomanian in England [63] , in Egypt [64] , in Libya [57] [46] and in the southwest of Morocco [10] [11] . Cribroperidinium intricatum is a marker for the Upper Albian-Lower Cenomanian in Atlantic Ocean [65] [13] , in NW Europe [66] [45] and in the Tethyan domain [67] . Dinopterygium tuberculatum characterize the upper Albian-Cenomanian in Australia [68] , in Egypt [69] , in Libya [58] , in Iraq [70] and in southwest of Morocco [10] [11] . Prolixosphaeridium conulum is considered a marker of the Cenomanian in France [66] [71] , in England [72] , in Australia [73] and in Morocco [11] [74] . It characterizes the upper Albian-middle Cenomanian of the Atlantic Ocean [13] and the Upper Albian-Lower Cenomanian of Libya [58] . Therefore, the interval between 3404 m and 3406.5 m may correspond to the Upper Albian-Lower Cenomanian.

4. Conclusion

The interval between 3404 m and 3408.5 m from FD.1 yielded rich and well preserved organic matter dominated by dinoflagellate cysts. Based on the association of dinoflagellate cysts: Cribroperidinium tensiftense, Chichaouadinium vestitum, Tehamadinium coummia, Spiniferella cornuta, Dinopterygium alatum, Litosphaeridium arundum, Cyclonephelium chabaca, Cribroperidinium auctificum, Chichaouadinium boydii, Sepispinula ancorifera, Litosphaeridium conispinum, Dinopterygium tuberculatum, Prolixosphaeridium conulum and Xenascus ceratioides; we assign an age to the studied interval. We assigned depths 3408 m and 3408.5 m to the middle-upper Albian transition. The upper Albian lies between 3406.5 m and 3408 m and the upper Albian-lower Cenomanian is identified between 3404 m and 3406.5 m.

Acknowledgements

We thank ONHYM (Office National des Hydrocarbures et des Mines) Rabat, Morocco for providing the borehole equipment. We would also like to thank the editor of Open Journal of Geology for treating our manuscript. This study is led by T. Hssaida.

Appendix A

Dinocysts species identified in this study and classified alphabetically. Details and references not provided are given in [75] [40] [76] .

Achomosphaera neptuni (Eisenack, 1958a) Davey and Williams, 1966a.

Achomosphaera spp. (Evitt, 1963).

Callaiosphaeridium spp. (Davey and Williams, 1966b).

Cf. Kiokansium unituberculatum (Tasch et al., 1964) Stover and Evitt, 1978.

Chichaouadinium boydii (Morgan, 1975) Bujak and Davies, 1983.

Chichaouadinium vestitum (Brideaux, 1971) Bujak and Davies, 1983.

Circulodinium distinctum (Deflandre and Cookson, 1955) Jansonius, 1986.

Coronifera oceanica (Cookson and Eisenack, 1958) May, 1980.

Coronifera spp. (Cookson and Eisenack, 1958) Davey, 1969a.

Cribroperidinium auctificum (Brideaux, 1971) Stover and Evitt, 1978.

Cribroperidinium edwardsii (Cookson and Eisenack, 1958) Davey, 1969a.

Cribroperidinium intricatum (Davey, 1969a).

Cribroperidinium spp. (Neale and Sarjeant, 1962) Davey, 1969a; Sarjeant, 1982b; Helenes, 1984.

Cribroperidinium tensiftense (Below, 1981a).

Cyclonephelium chabaca (Below, 1981a).

Dinopterygium alatum (Cookson and Eisenack, 1962b) Fensome et al., 2009.

Dinopterygium tuberculatum (Eisenack and Cookson, 1960) Stover and Evitt, 1978.

Exochosphaeridium phragmites (Davey et al., 1966)

Florentinia laciniata (Davey and Verdier, 1973).

Florentinia mantellii (Davey and Williams, 1966b) Davey and Verdier, 1973.

Hystrichodinium pulchrum (Deflandre, 1935)

Kiokansium polypes (Cookson and Eisenack, 1962b) Below, 1982c.

Kiokansium spp. (Stover and Evitt, 1978).

Kleithriasphaeridium eoinodes (Eisenack, 1958a). Sarjeant, 1985a.

Kleithriasphaeridium spp. (Davey, 1974) Torricelli, 2001; Fensome et al., 2009.

Litosphaeridium arundum (Eisenack and Cookson, 1960) Davey, 1979b.

Litosphaeridium conispinum (Davey and Verdier, 1973) Lucas-Clark, 1984.

Odontochitina Costata (Alberti, 1961) Clarke and Verdier, 1967.

Odontochitina operculata (Wetzel, 1933a) Deflandre and Cookson, 1955.

Oligosphaeridium albertense (Pocock, 1962) Davey and Williams, 1969.

Oligosphaeridium complex (White, 1842) Davey and Williams, 1966b.

Oligosphaeridium totum (Brideaux, 1971).

Ovoidinium implanum (Davey, 1979b).

Pervosphaeridium cenomaniense (Norvick, 1976) Below, 1982c.

Pervosphaeridium spp. (Yun Hyesu, 1981).

Prolixosphaeridium conulum (Davey, 1969a).

Pterodinium spp. (Eisenack, 1958a) Yun Hyesu, 1981; Sarjeant, 1985a.

Sepispinula ancorifera (Cookson and Eisenack, 1960a) Islam, 1993.

Spiniferella cornuta (Gerlach, 1961) Stover and Hardenbol, 1994.

Spiniferites lenzii (Below, 1982c)

Spiniferites multibrevis (Davey and Williams, 1966a) Below, 1982c.

Spiniferites ramosus (Ehrenberg, 1837b) Mantell, 1854.

Spiniferites spp. (Mantell, 1850) Sarjeant, 1970.

Subtilisphaera spp. (Jain and Millepied, 1973) Lentin and Williams, 1976.

Tanyosphaeridium variecalamum (Davey and Williams, 1966b).

Tehamadinium coummia (Below, 1981a) Jan du Chêne et al., 1986b.

Tehamadinium mazaganense (Below, 1984) Jan du Chêne et al., 1986b.

Tenua hystrix (Eisenack, 1958a) Sarjeant, 1985a.

Xenascus ceratioides (Deflandre, 1937b) Lentin and Williams, 1973.

Xenascus spp. Cookson and Eisenack, 1969.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Sahabi, M., Aslanian, D. and Olivet, J.L. (2004) Un nouveau point de départ pour l’histoire de l’Atlantique central. Comptes Rendus Geoscience, 336, 1041-1052.
https://doi.org/10.1016/j.crte.2004.03.017
[2] Ranke, C., Creutzig, A. and Alexander, K. (1992) Duplex Scanning of the Peripheral Arteries: Correlation of the Peak Velocity Ratio with Angiographic Diameter Reduction. Ultrasound in Medicine & Biology, 18, 433-440.
https://doi.org/10.1016/0301-5629(92)90082-L
[3] Wiedmann, J., Butt, A. and Einsele, G. (1982) Cretaceous Stratigraphy, Environment, and Subsidence History at the Moroccan Continental Margin. In: von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E., Eds., Geology of the Northwest African Continental Margin, Springer, Berlin, 366-395.
https://doi.org/10.1007/978-3-642-68409-8_15
[4] Elkhatib, J. and Ruellan, E. (1995) Etude structurale et stratigraphique d’un segment de la marge continentale atlantique sud-marocaine: Le bassin de tarfaya-laayoune. Master’s Thesis, Université de Nice, Nice.
[5] El Albani, A.E. (1995) Les formations du Crétacé supérieur du bassin de Tarfaya (Maroc méridional): Sédimentologie et géochimie. Ph.D. Thesis, Université de Lille, Lille.
[6] Prauss, M.L. (2012) Potential Freshwater Dinocysts from Marine Upper Cenomanian to Upper Coniacian Strata of Tarfaya, Northwest Africa: Three New Species of Bosedinia. Cretaceous Research, 37, 285-290.
https://doi.org/10.1016/j.cretres.2012.04.011
[7] Prauss, M.L. (2012) The Cenomanian/Turonian Boundary Event (CTBE) at Tarfaya, Morocco, Northwest Africa: Eccentricity Controlled Water Column Stratification as Major Factor for Total Organic Carbon (TOC) Accumulation: Evidence from Marine Palynology. Cretaceous Research, 37, 246-260.
https://doi.org/10.1016/j.cretres.2012.04.007
[8] Prauss, M.L. (2015) Marine Palynology of the Oceanic Anoxic Event 3 (OAE3, Coniacian-Santonian) at Tarfaya, Morocco, NW Africa-Transition from Preservation to Production Controlled Accumulation of Marine Organic Carbon. Cretaceous Research, 53, 19-37.
https://doi.org/10.1016/j.cretres.2014.10.005
[9] Ali, S. (2012) Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering. Master’s Thesis, Christian-Albrechts Universität Kiel, Kiel.
[10] Below, R. (1984) Aptian to Cenomanian Dinoflagellate Cysts from the Mazagan Plateau, Northwest Africa (Site-545 and Site-547, Deep-Sea Drilling Project Leg-79).
https://doi.org/10.2973/dsdp.proc.79.123.1984
[11] Maatouf, W., Hssaida, T., Benbouziane, A., Khaffou, H. and Essamoud, R. (2020) Late Aptian to Early Cenomanian Dinoflagellate Cysts from Agadir Basin, Southwestern Morocco: Biostratigraphy and Palaeoenvironment. Annales de Paléontologie, 106, Article ID: 102441.
https://doi.org/10.1016/j.annpal.2020.102441
[12] Sánchez-Pellicer, R., Masure, E. and Villier, L. (2018) Distribution of Albian Dinoflagellate Cyst Associations along a Proximal-Distal Transect across the Iberian Margin. Cretaceous Research, 92, 240-256.
https://doi.org/10.1016/j.cretres.2018.08.004
[13] Masure, E. (1988) Berriasian to Aptian Dinoflagellate Cysts from the Galicia Margin, Offshore Spain, Sites 638 and 639, ODP Leg 103. In: Boillot, G. and Winterer, E., Eds., Proceedings of the ODP, Scientific Results 103, College Station, 433-444.
[14] Krauspenhar, P.M., Carvalho, M.A., Fauth, G. and Lana, C.C. (2014) Albian Palynostratigraphy of ODP Leg 207 (Holes 1257A, 1258C and 1260B), Demerara Rise, Equatorial Atlantic. Revue de micropaléontologie, 57, 1-13.
https://doi.org/10.1016/j.revmic.2014.02.002
[15] Lana, C.C., Arai, M. and Roesner, E.H. (2002) Dinoflagelados fósseis da seção cretácea marinha das bacias marginais brasileiras: Um estudo comparativo entre as margens equatorial e sudeste. Simpósio sobre o Cretáceo do Brasil, 6, 247-252.
[16] Arai, M., Botelho Neto, J., Cunha Lana, C. and Pedrao, E. (2000) Cretaceous Dinoflagellate Provincialism in Brazilian Marginal Basins. Cretaceous Research, 21, 351-366.
https://doi.org/10.1006/cres.2000.0211
[17] Barrón, E., Peyrot, D., Rodríguez-López, J.P., Meléndez, N., del Valle, R.L., Najarro, M., Rosales, I. and Comas-Rengifo, M.J. (2015) Palynology of Aptian and Upper Albian (Lower Cretaceous) Amber-Bearing Outcrops of the Southern Margin of the Basque-Cantabrian Basin (Northern Spain). Cretaceous Research, 52, 292-312.
https://doi.org/10.1016/j.cretres.2014.10.003
[18] Lehmann, R. (1965) Résultats d’une étude des Globotruncanidés du Crétacé supérieur de la province de Tarfaya (Maroc occidental). Mémoires du BRGM, 32, 113-117.
[19] Choubert, G., Faure-Muret, A. and Hottinger, L. (1966) Aperçu géologique du bassin côtier de Tarfaya. Editions du Service géologique du Maroc, Morocco.
[20] Wiedmann, J., Einsele, G. and Immel, H. (1978) Vergleich von marokkanischen Kreide-Küstenaufschlüssen und Tiefseebohrungen (DSDP): stratigraphie, paläoenvironment und subsidenz an einem passiven kontinentalrand. Geologische Rundschau, 67, 454-508.
[21] Ranke, U., von Rad, U. and Wissmann, G. (1982) Stratigraphy, Facies and Tectonic Development of the On-and Offshore Aaiun-Tarfaya Basin—A Review. In: von Rad, U., Hinz, K., Sarnthein, M. and Seibold, E., Eds., Geology of the Northwest African Continental Margin, Springer, Berlin, 86-105.
https://doi.org/10.1007/978-3-642-68409-8_6
[22] El Albani, A., Vachard, D., Kuhn, W. and Chellai, H. (1999) Signature of Hydrodynamic Activity Caused by Rapid Sea Level Changes in Pelagic Organic-Rich Sediments, Tarfaya Basin (Southern Morocco). Comptes Rendus de lAcadémie des Sciences-Series IIA-Earth and Planetary Science, 329, 397-404.
https://doi.org/10.1016/S1251-8050(00)80063-4
[23] Keller, G., Adatte, T., Berner, Z., Chellai, E.H. and Stueben, D. (2008) Oceanic Events and Biotic Effects of the Cenomanian-Turonian Anoxic Event, Tarfaya Basin, Morocco. Cretaceous Research, 29, 976-994.
https://doi.org/10.1016/j.cretres.2008.05.020
[24] Aquit, M., Kuhnt, W., Holbourn, A., Hassane Chellai, E., Lees, J.A., Kluth, O., Jabour, H. and Delaporte, J.P. (2014) Cenomanian to Campanian Sea-Level History of the Tarfaya Basin (SW Morocco): Evidence from High-Resolution XRF Scanner-Derived Elemental Records and Bulk Carbonate Stable Isotopes. EGU General Assembly Conference Abstracts.
[25] Kuhnt, W., Holbourn, A.E., Beil, S., Aquit, M., Krawczyk, T., Flögel, S., Chellai, E.H. and Jabour, H. (2017) Unraveling the Onset of Cretaceous Oceanic Anoxic Event 2 in an Extended Sediment Archive from the Tarfaya-Laayoune Basin, Morocco. Paleoceanography, 32, 923-946.
https://doi.org/10.1002/2017PA003146
[26] Kolonic, S., Sinninghe Damsté, J.S., Böttcher, M.E., Kuypers, M.M.M., Kuhnt, W., Beckmann, B., Scheeder, G. and Wagner, T. (2002) Geochemical Characterization of Cenomanian/Turonian Black Shales from the Tarfaya Basin (SW Morocco): Relationships between Palaeoenvironmental Conditions and Early Sulphurization of Sedimentary Organic Matter. Journal of Petroleum Geology, 25, 325-350.
https://doi.org/10.1111/j.1747-5457.2002.tb00012.x
[27] Kolonic, S., Wagner, T., Forster, A., Sinninghe Damsté, J.S., Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H.J., Chellai, E.H., Tsikos, H., Wolfgang Kuhnt, W. and Kuypers, M.M. (2005) Black Shale Deposition on the Northwest African Shelf during the Cenomanian/Turonian Oceanic Anoxic Event: Climate Coupling and Global Organic Carbon Burial. Paleoceanography, 20, 1-18.
https://doi.org/10.1029/2003PA000950
[28] Gebhardt, C., Ballvora, A., Walkemeier, B., Oberhagemann, P. and Schüler, K. (2004) Assessing Genetic Potential in Germplasm Collections of Crop Plants by Marker-Trait Association: A Case Study for Potatoes with Quantitative Variation of Resistance to Late Blight and Maturity Type. Molecular Breeding, 13, 93-102.
https://doi.org/10.1023/B:MOLB.0000012878.89855.df
[29] Bouab, N. (2001) Application des méthodes de datation par luminescence optique à l’évolution des environnements désertiques: Sahara occidental (Maroc) et Îles Canaries orientales (Espagne). Master’s Thesis, Université du Québec à Chicoutimi, Chicoutimi.
https://doi.org/10.1522/13721974
[30] Ali, S., Stattegger, K., Liu, Z., Khélifi, N. and Kuhnt, W. (2019) Paleoclimatic and Paleoenvironmental Reconstruction at Tarfaya Atlantic Coastal Basin (Morocco) Based on Clay Mineral Records from Upper Cretaceous to Quaternary. Arabian Journal of Geosciences, 12, Article No. 6.
https://doi.org/10.1007/s12517-018-4156-4
[31] Dillon, W.P. and Sougy, J.M. (1974) Geology of West Africa and Canary and Cape Verde Islands. In: Nairn, A.E.M. and Stehli, F.G., Eds., The Ocean Basins and Margins, Springer, Boston, 315-390.
https://doi.org/10.1007/978-1-4684-3033-2_10
[32] Viotti, C. (1963) Microfaunes et microfaciès du sondage Puerto Cansado 1 (Maroc méridional, province de Tarfaya). Mém. BRGM, 32, Colloque International. Micropaléontologie, Dakar, 6-11.
[33] Auxini, A.E. (1969) Correlation estratigrafica de los sondeos perforados en el Sahara espanol: Bol. Boletín Geológico y Minero, 83, 235-251.
[34] Vail, P.R., Mitchum, R.M. and Thompson, S. (1977) Seismic Stratigraphy and Global Changes of Sea Level: Part 4. Global Cycles of Relative Changes of Sea Level. M 26: Seismic Stratigraphy—Application of Seismic Reflection Configuration to Stratigraphic Interpretation, 83-97.
[35] Ratschiller, L.K. (1970) Lithostratigraphy of the Northern Spanish Sahara. Museo tridentino di scienze naturali.
[36] Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J. and Wagner, T. (2005) Orbital-Scale Record of the late Cenomanian-Turonian Oceanic Anoxic Event (OAE-2) in the Tarfaya Basin (Morocco). International Journal of Earth Sciences, 94, 147-159.
https://doi.org/10.1007/s00531-004-0440-5
[37] Michard, A., Soulaimani, A., Hoepffner, C., Ouanaimi, H., Baidder, L., Rjimati, E.C. and Saddiqi, O. (2010) The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics, 492, 1-24.
https://doi.org/10.1016/j.tecto.2010.05.021
[38] Wood, G.D., Gabriel, A.M. and Lawson, J.C. (1996) Palynological Techniques-Processing and Microscopy. Chapter 3. In: Jansonius, J. and McGregor, D.C., Eds., Palynology: Principles and Applications, American Association of Stratigraphic Palynologists Foundation, Dallas, 29-50.
[39] Williams, G., Fensome, R., Miller, M. and Bujak, J. (2018) Microfossils: Palynology. In: Sorkhabi, R., Ed., Encyclopedia of Petroleum Geoscience, Springer, Cham, 1-15.
https://doi.org/10.1007/978-3-319-02330-4_146-1
[40] Fensome, R.A., Crux, J.A., Gard, I.G., MacRae, A., Williams, G.L., Thomas, F.C., Fiorini, F. and Wach, G. (2008) The Last 100 Million Years on the Scotian Margin, Offshore Eastern Canada: An Event-Stratigraphic Scheme Emphasizing Biostratigraphic Data. Atlantic Geology, 44, 93-126.
https://doi.org/10.4138/6506
[41] Verdier, J.P. (1975) Dinoflagellate Cysts from the Wissant Section, and Their Stratigraphic Distribution in the Middle Cretaceous. Revue de micropaleontology, 17, 191-197.
[42] Fauconnier, D. (1975) Répartition des péridiniens de l’Albien du bassin de Paris. Rôle stratigraphique et liaison avec le cadre sédimentologique. Bulletins du BRGM, 4, 235-273
[43] Fauconnier, D. (1995) Jurassic Palynology from a Borehole in the Champagne Area, France-Correlation of the Lower Callovian-Middle Oxfordian Using Sequence Stratigraphy. Review of Palaeobotany and Palynology, 87, 15-26.
https://doi.org/10.1016/0034-6667(94)00142-7
[44] Davey, R.J. (1979) The Stratigraphic Distribution of Dinocysts in the Portlandian (la Test Jurassic) to Barremian (Early Cretaceous) of Northwest Europe. American Association of Stratigraphic Palynologists Contributions Series 5B, 5, 49-81.
[45] Foucher, J.C. (1981) Kystes de Dinoflagellés du Crétacé moyen européen: Proposition d’une échelle biostratigraphique pour le domaine nord-occidental. Cretaceous Research, 2, 331-338.
https://doi.org/10.1016/0195-6671(81)90021-5
[46] Thusu, B. and Van der Eem, J.G.L.A. (1985) Early Cretaceous (Neocomian-Cenomanian) Palynomorphs. Journal of Micropalaeontolgy, 4, 131-149.
https://doi.org/10.1144/jm.4.1.131
[47] El Beialy, S.Y. (1993) Mid-Cretaceous Palynomorphs from the Bardawil-1 Borehole, North Sinai, Egypt. Cretaceous Research, 14, 49-58.
https://doi.org/10.1006/cres.1993.1004
[48] Ibrahim, M.I. (2002) Late Albian-Middle Cenomanian Palynofacies and Palynostratigraphy, Abu Gharadig-5 Well, Western Desert, Egypt. Cretaceous Research, 23, 775-788.
https://doi.org/10.1006/cres.2002.1027
[49] Guler, V. and Archangelsky, S. (2006) Albian Dinoflagellate Cysts from the Kachaike Formation, Austral Basin, Southwest Argentina. Revista del Museo Argentino de Ciencias Naturales nueva serie, 8, 179-184.
https://doi.org/10.22179/REVMACN.8.317
[50] Mahmoud, M.S. and Deaf, A.S. (2007) Cretaceous Palynology (Spores, Pollen and Dinoflagellate Cysts) of the Siqeifa 1-X Borehole, Northern Egypt. Rivista Italiana di Paleontologia e Stratigrafia, 113, 203-221.
[51] El Beialy, S.Y., Head, M.J. and El Atfy, H.S. (2010) Palynology of the Mid-Cretaceous Malha and Galala formations, Gebel El Minshera, North Sinai, Egypt. Palaios, 25, 517-526.
https://doi.org/10.2110/palo.2009.p09-128r
[52] Villanueva-Amadoz, U., Sender, L.M., Diez, J.B., Ferrer, J. and Pons, D. (2011) Palynological Studies of the Boundary Marls Unit (Albian-Cenomanian) from Northeastern Spain. Paleophytogeographical Implications. Geodiversitas, 33, 137-176.
https://doi.org/10.5252/g2011n1a7
[53] Abd El Hakam, A.B., Mandur, M.M. and Moustfa, T.F. (2012) Aptian-Cenomanian Palynozonation and Paleoecology from Horous-1 Well, Northern Western Desert, Egypt. Journal of Applied Sciences Research, 8, 1490-1501.
[54] Makled, W.A., Baioumi, A.H.A. and Saleh, R.A. (2013) Palynostratigraphical Studies on Some Subsurface Middle Albian-Early Cenomanian Sediments from North Western Desert, Egypt. Egyptian Journal of Petroleum, 22, 501-515.
https://doi.org/10.1016/j.ejpe.2013.11.005
[55] Tahoun, S.S., Deaf, A.S. and Ied, I.M. (2018) The Use of Cyclic Stratigraphic Pattern of Peridinioid and Gonyaulacoid Dinoflagellate Cysts in Differentiating Potential Thick Monotonous Carbonate Reservoirs: A Possible Ecostratigraphic Tool under Test. Marine and Petroleum Geology, 96, 240-253.
https://doi.org/10.1016/j.marpetgeo.2018.05.030
[56] Fiet, N. and Masure, E. (2001) Les dinoflagellés albiens du bassin de Marches-Ombrie (Italie): Proposition d’une biozonation pour le domaine téthysien. Cretaceous Research, 22, 63-77.
https://doi.org/10.1006/cres.2000.0237
[57] Batten, D. and Uwins, P. (1985) Early-Late Cretaceous (Aptian-Cenomanian) Palynomorphs. Journal of Micropalaeontology, 4, 151-167.
https://doi.org/10.1144/jm.4.1.151
[58] Uwins, P.J.R. and Batten, D.J. (1988) Early to Mid-Cretaceous Palynology of Northeast Libya. In: El-Arnauti, A., et al., Eds., Subsurface Palynostratigraphy of Northeast Libya, Garyounis University Publications, Benghazi, 215-257.
[59] Arai, M. (1992) Dinoflagellates from the Middle Cretaceous in the Offshore Campos Basin, Southeastern Brazil. Simpósio sobre as bacias Cretácicas Brasileiras, 2, 27-29.
[60] Thurow, Y. (1988) Cretaceous Radiolarians of the North Atlantic Ocean: ODP LEG 103 (Sites 638, 640, and 641) and DSDP Legs 93 (Site 603) and 47B (Site 398). Proceedings of the Ocean Drilling Program, Scientific Results, 103, 379-418.
https://doi.org/10.2973/odp.proc.sr.103.148.1988
[61] Islam, M.A. (1993) Review of the Fossil Dinoflagellate Cleistosphaeridium. Revista Espanola de Micropaleontologia, 25, 81-94.
[62] Davey, R.J. (1978) Marine Cretaceous Palynology of Site 361, Dsdp Leg 40, off Southwestern Africa. Institute of Geological Sciences, Leeds, 883-913.
[63] Tocher, B.A. and Jarvis, I. (1996) Dinoflagellate Cyst Distributions and the AlbianCenomanian Boundary (Mid-Cretaceous) at Cordebugle, NW France and Lewes, Southern England. Journal of Micropalaeontolgy, 15, 55-67.
https://doi.org/10.1144/jm.15.1.55
[64] El Beialy, S.Y. (1994) Palynological Investigations of Cretaceous Sediments in the Abu El Gharadiq Oil Field, Western Desert, Egypt. Newsletters on Stratigraphy, 31, 71-84.
https://doi.org/10.1127/nos/31/1994/71
[65] Masure, E. (1984) L’indice de diversité et les dominances des communautés de kystes de dinoflagellés: Marqueurs bathymétriques; forage 398 D, croisière 47 B. Bulletin de la Société géologique de France, 26, 93-111.
https://doi.org/10.2113/gssgfbull.S7-XXVI.1.93
[66] Foucher, J.C. (1980) Dinoflagellés et Acritarches dans le Crétacé du Boulonnais. In: Robaszynski, F., Amédro, F., Foucher, J.C., Gaspard, D., Magniez, F., Manivit, H. and Sornay, J., Eds., Sythèse biostratigraphique de lAptien au Santonien du Boulonnais, à partir de sept groupes paléontologiques: Foraminifères, nannoplancton, dinoflagellés et macrofaunes, Revue de Micropaléontologie, 228-290.
[67] Berthou, P.Y., Hasenboehler, B. and Moron, J. (1981) Apports de la palynologie à la stratigraphie du Crétacé moyen et supérieur du bassin occidental portugais [The Contribution of Palynology to the Stratigraphy of the Middle to late Cretaceous West Portugal Basin]. Memorias e Noticias-Pulicacoes do Museu e Laboratorio Mineralogico e Geologico da Universidade de Coimbra, 91, 183-221.
[68] Helby, R., Morgan, R. and Partridge, A. D. (1987) A Palynological Zonation of the Australian Mesozoic. Memoir of the Association of Australasian Palaeontologists, 4, 1-94.
[69] El Beialy, S.Y. (1995) Campanian-Maastrichtian Palynomorphs from the Duwi (Phosphate) Formation of the Hamrawein and Umm El Hueitat Mines, Red Sea Coast, Egypt. Review of Palaeobotany and Palynology, 85, 303-317.
https://doi.org/10.1016/0034-6667(94)00121-Y
[70] Al-Ameri, T.K., Al-Najar, T.K. and Batten, D.J. (2001) Palynostratigraphy and Palynofacies Indications of Depositional Environments and Source Potential for Hydrocarbons: The Mid Cretaceous Nahr Umr and Lower Mauddud Formations, Iraq. Cretaceous Research, 22, 735-742.
https://doi.org/10.1006/cres.2001.0288
[71] Davey, R. and Williams, G. (1966) The Genera Hystrichosphaera and Achomosphaera. In: Davey, R.J., Downie, C., Sarjeant, W.A.S. and Williams, G.L., Eds., Studies on Mesozoic and Cainozoic Dinoflagellate Cysts, British Museum (Natural History) Geology, Bulletin, Supplement 3, 28-52.
[72] Eisenack, A. and Kjellström, G. (1971) Katalog der fossilen Dinoflagellaten, Hystrichosphären und-verwandten Mikrofossilien. Schweizerbart (Nägele u. Obermiller).
[73] Norvick, M.S. and Burger, D. (1976) Mid-Cretaceous Microplankton from Bathurst Island. Palynology of the Cenomanian of Bathurst Island, Northern Territory, Australia.
[74] Below, R. (1982) Scolochorate Zysten der Gonyaulacaceae (Dinophyceae) aus der Unterkreide Marokkos. Palaeontographica Abteilung B Paläophytologie, 181, 1-51.
[75] Fensome, R.A. and Williams, G.L. (2004) The Lentin and Williams Index of Fossil Dinoflagellages. American Association of Stratigraphic Palynologists Foundation.
[76] Fensome, R.A., Williams, G.L. and MacRae, R.A. (2009) Late Cretaceous and Cenozoic Fossil Dinoflagellates and Other Palynomorphs from the Scotian Margin, Offshore Eastern Canada. Journal of Systematic Palaeontology, 7, 1-79.
https://doi.org/10.1017/S1477201908002538

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.