RETRACTED: The Beneficial Effects of Components of Garlic (Allium sativum L.) in the Poultry Industry
Alejandra Meza-Rios1, Gilberto Velazquez-Juarez2, Inkar Castellanos-Huerta3*, Rocio Ivette Lopez-Roa4, Luis A. Anguiano-Sevilla1, Xochitl Hernanez-Velasco5, Xochitl Hernanez-Velasco5, Saeed El-Ashram6, Ebtsam Al-Olayan7, Billy Hargis3, Guillermo Tellez-Isaias3, Adelaida Sara Minia Zepeda-Morales8*
1Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, Guadalajara, México.
2Laboratorio de Análisis Fisicoquímicos Externos, Departamento de Química, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, Guadalajara, México.
3Center of Excellence for Poultry Science, Department of Poultry Science, Dale Bumpers College of Agricultural, Food and Life Sciences, University of Arkansas, Cumberland, United States.
4Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, Guadalajara, México.
5Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico, Mexico.
6Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
7Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
8Laboratorio de Análisis Clínicos y Bacteriológicos (vinculación), Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Boulevard Marcelino García Barragán, Guadalajara, México.
DOI: 10.4236/fns.2024.151002   PDF    HTML     97 Downloads   497 Views  

Abstract

Short Retraction Notice


The paper is withdrawn because of personal reasons.

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof. Dr. Alessandra Bordoni (EiC of FNS)

The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".

Share and Cite:

  

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Wegener, H.C. (2003) Antibiotics in Animal Feed and Their Role in Resistance Development. Current Opinion in Microbiology, 6, 439-445.
https://doi.org/10.1016/j.mib.2003.09.009
[2] Roy Chowdhury, P., McKinnon, J., Wyrsch, E., Hammond, J.M., Charles, I.G. and Djordjevic, S.P. (2014) Genomic Interplay in Bacterial Communities: Implications for Growth Promoting Practices in Animal Husbandry. Frontiers in Microbiology, 5, Article 394.
https://doi.org/10.3389/fmicb.2014.00394
[3] Chen, J., Wang, F., Yin, Y. and Ma, X. (2021) The Nutritional Applications of Garlic (Allium sativum) as Natural Feed Additives in Animals. PeerJ, 9, e11934.
https://doi.org/10.7717/peerj.11934
[4] Harris, S.J., Cormican, M. and Cummins, E. (2012) Antimicrobial Residues and Antimicrobial-Resistant Bacteria: Impact on the Microbial Environment and Risk to Human Health—A Review. Human and Ecological Risk Assessment, 18, 767-809.
https://doi.org/10.1080/10807039.2012.688702
[5] Bacanli, M. and Basaran, N. (2019) Importance of Antibiotic Residues in Animal Food. Food and Chemical Toxicology, 125, 462-466.
https://doi.org/10.1016/j.fct.2019.01.033
[6] Al-Dobaib, S. and Mousa, H. (2009) Benefits and Risks of Growth Promoters in Animal Production. Journal of Food, Agriculture and Environment, 7, 202-208.
[7] Edqvist, L.-E. and Pedersen, K.B. (2013) Antimicrobials as Growth Promoters: Resistance to Common Sense. In: Harremoes, P., et al., Eds., The Precautionary Principle in the 20th Century, Routledge, London, 100-110.
[8] Andersson, D.I. and Hughes, D. (2014) Microbiological Effects of Sublethal Levels of Antibiotics. Nature Reviews Microbiology, 12, 465-478.
https://doi.org/10.1038/nrmicro3270
[9] Knoop, K.A., McDonald, K.G., Kulkarni, D.H. and Newberry, R.D. (2016) Antibiotics Promote Inflammation through the Translocation of Native Commensal Colonic Bacteria. Gut, 65, 1100-1109.
https://doi.org/10.1136/gutjnl-2014-309059
[10] Bennett, P.M. (2008) Plasmid Encoded Antibiotic Resistance: Acquisition and Transfer of Antibiotic Resistance Genes in Bacteria. British Journal of Pharmacology, 153, S347-S357.
https://doi.org/10.1038/sj.bjp.0707607
[11] Singer, R.S., Finch, R., Wegener, H.C., Bywater, R., Walters, J. and Lipsitch, M. (2003) Antibiotic Resistance—The Interplay between Antibiotic Use in Animals and Human Beings. The Lancet Infectious Diseases, 3, 47-51.
https://doi.org/10.1016/S1473-3099(03)00490-0
[12] Darwish, W.S., Eldaly, E.A., El-Abbasy, M.T., Ikenaka, Y., Nakayama, S. and Ishizuka, M. (2013) Antibiotic Residues in Food: The African Scenario. Japanese Journal of Veterinary Research, 61, S13-S22.
[13] Lee, M., Lee, H. and Ryu, P. (2001) Public Health Risks: Chemical and Antibiotic Residues-Review. Asian-Australasian Journal of Animal Sciences, 14, 402-413.
https://doi.org/10.5713/ajas.2001.402
[14] Modi, S.R., Collins, J.J. and Relman, D.A. (2014) Antibiotics and the Gut Microbiota. Journal of Clinical Investigation, 124, 4212-4218.
https://doi.org/10.1172/JCI72333
[15] Aleksic, A. (2022) How the Immune System and Digestive System Work Together. Microbiome|Nature Medicine, 4.
https://microbiomeplus.com/blogs/our-blog-posts/how-digestive-and-immune-systems-work-together
[16] Ogunrinola, G.A., Oyewale, J.O., Oshamika, O.O. and Olasehinde, G.I. (2020) The Human Microbiome and Its Impacts on Health. International Journal of Microbiology, 2020, Article ID: 8045646.
https://doi.org/10.1155/2020/8045646
[17] Zheng, W., Guo, M. and Czapar, G. (2020) Environmental Fate and Transport of Veterinary Antibiotics Derived from Animal Manure. In: Waldrip, H.M., Pagliari, P.H. and He, Z., Eds., Animal Manure: Production, Characteristics, Environmental Concerns, and Management, Vol. 67, American Society of Agronomy, Inc. Soil Science Society of America, Inc., 409-430.
https://doi.org/10.2134/asaspecpub67.c15
[18] Laborda, P., Sanz-García, F., Ochoa-Sánchez, L.E., Gil-Gil, T., Hernando-Amado, S. and Martínez, J.L. (2022) Wildlife and Antibiotic Resistance. Frontiers in Cellular and Infection Microbiology, 12, Article 873989.
https://doi.org/10.3389/fcimb.2022.873989
[19] Barrett, J.R., Innes, G.K., Johnson, K.A., Lhermie, G., Ivanek, R., Greiner Safi, A. and Lansing, D. (2021) Consumer Perceptions of Antimicrobial Use in Animal Husbandry: A Scoping Review. PLOS ONE, 16, e0261010.
https://doi.org/10.1371/journal.pone.0261010
[20] Bradford, H., McKernan, C., Elliott, C. and Dean, M. (2022) Consumers’ Perceptions and Willingness to Purchase Pork Labelled ‘Raised without Antibiotics’. Appetite, 171, Article 105900.
https://doi.org/10.1016/j.appet.2021.105900
[21] Smith, R. and Parker, D. (2023) A Practical Approach to Managing Poultry Production Without Antibiotics. In: O’Neill, H.M., Burton, E. and Scholey, D., Eds., Pre and Probiotics for Poultry Gut Health, CABI, 39-51.
[22] Landman, W. and Van Eck, J. (2015) The Incidence and Economic Impact of the Escherichia coli Peritonitis Syndrome in Dutch Poultry Farming. Avian Pathology, 44, 370-378.
https://doi.org/10.1080/03079457.2015.1060584
[23] Agyare, C., Boamah, V.E., Zumbi, C.N. and Osei, F.B. (2018) Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance. In: Kumar, Y., Ed., Antimicrobial Resistance—A Global Threat, IntechOpen, London, 33-51.
https://doi.org/10.5772/intechopen.79371
[24] Park, Y.H., Hamidon, F., Rajangan, C., Soh, K.P., Gan, C.Y., Lim, T.S., Abdullah, W.N.W. and Liong, M.T. (2016) Application of Probiotics for the Production of Safe and High-Quality Poultry Meat. Korean Journal for Food Science of Animal Resources, 36, 567-576.
https://doi.org/10.5851/kosfa.2016.36.5.567
[25] Wibisono, F.M., Wibison, F.J., Effendi, M.H., Plumeriastuti, H., Hidayatullah, A.R., Hartadi, E.B. and Sofiana, E.D. (2020) A Review of Salmonellosis on Poultry Farms: Public Health Importance. Systematic Reviews in Pharmacy, 11, 481-486.
[26] Gast, R.K. and Porter Jr., R.E. (2020) Salmonella Infections. In: Swayne, D.E., et al., Eds., Diseases of Poultry, John Wiley & Sons, Inc., Hoboken, 717-753.
https://doi.org/10.1002/9781119371199.ch16
[27] Sojka, W. and Carnaghan, R. (1961) Escherichia coli Infection in Poultry. Research in Veterinary Science, 2, 340-352.
https://doi.org/10.1016/S0034-5288(18)34938-5
[28] Mageiros, L., Méric, G., Bayliss, S.C., Pensar, J., Pascoe, B., Mourkas, E., Calland, J.K., Yahara, K., Murray, S., Wilkinson, T.S., et al. (2021) Genome Evolution and the Emergence of Pathogenicity in Avian Escherichia coli. Nature Communications, 12, Article No. 765.
https://doi.org/10.1038/s41467-021-20988-w
[29] Permin, A., Christensen, J. and Bisgaard, M. (2006) Consequences of Concurrent Ascaridia galli and Escherichia coli Infections in Chickens. Acta Veterinaria Scandinavica, 47, Article No. 1.
https://doi.org/10.1186/1751-0147-47-1
[30] Paiva, D. and McElroy, A. (2014) Necrotic Enteritis: Applications for the Poultry Industry. Journal of Applied Poultry Research, 23, 557-566.
https://doi.org/10.3382/japr.2013-00925
[31] Terrier, M.C.Z., Simonet, M.L., Bichard, P. and Frossard, J.L. (2014) Recurrent Clostridium Difficile Infections: The Importance of the Intestinal Microbiota. World Journal of Gastroenterology, 20, 7416-7423.
https://doi.org/10.3748/wjg.v20.i23.7416
[32] Boulianne, M., Blackall, P.J., Hofacre, C.L., Ruiz, J.A., Sandhu, T.S., Hafez, H.M., Chin, R.P., Register, K.B. and Jackwood, M.W. (2020) Pasteurellosis and Other Respiratory Bacterial Infections. In: Swayne, D.E., et al., Eds., Diseases of Poultry, John Wiley & Sons, Inc., Hoboken, 831-889.
https://doi.org/10.1002/9781119371199.ch19
[33] Register, K.B. and Brockmeier, S.L. (2019) Pasteurellosis. In: Zimmerman, J.J., et al., Eds., Diseases of Swine, John Wiley & Sons, Inc., Hoboken, 884-897.
https://doi.org/10.1002/9781119350927.ch57
[34] Hamzah, D.J., Ayed, M. and Muhammed, H.A. (2022) Evaluation of Culturing and Molecular Assay for Detection of Mycoplasma gallisepticum in Chicken Suffering from Chronic Respiratory Disease. Cellular and Molecular Biology, 68, 86-92.
https://doi.org/10.14715/cmb/2022.68.4.11
[35] Stipkovits, L. and Kempf, I. (1996) Mycoplasmoses in Poultry. Revue Scientifique et Technique, 15, 1495-1525.
https://doi.org/10.20506/rst.15.4.986
[36] Stepien-Pysniak, D., Marek, A. and Rzedzicki, J. (2009) Occurrence of Bacteria of the Genus Staphylococcus in Table Eggs Descended from Different Sources. Polish Journal of Veterinary Sciences, 12, 481-484.
[37] Benskin, C.M.H., Wilson, K., Jones, K. and Hartley, I.R. (2009) Bacterial Pathogens in Wild Birds: A Review of the Frequency and Effects of Infection. Biological Reviews, 84, 349-373.
https://doi.org/10.1111/j.1469-185X.2008.00076.x
[38] McMullin, P.F. (2020) Diseases of Poultry 14th Edition: David E. Swayne, Martine Boulianne, Catherine M. Logue, Larry R. McDougald, Venugopal Nair, David L. Suarez, Sjaak de Wit, Tom Grimes, Deirdre Johnson, Michelle Kromm, Teguh Yodiantara Prajitno, Ian Rubinoff & Guillermo Zavala (Eds.), Hoboken, NJ, John Wiley & Sons, 2020, 1451 pp., £190 (hardcover)/£171.99 (e-book), ISBN 9781119371168. Avian Pathology, 49, 526.
https://doi.org/10.1080/03079457.2020.1794237
[39] Teillant, A. and Laxminarayan, R. (2015) Economics of Antibiotic Use in US Swine and Poultry Production. Choices, 30, 1-11.
[40] Abd El-Hack, M.E., El-Saadony, M.T., Salem, H.M., El-Tahan, A.M., Soliman, M.M., Youssef, G.B., Taha, A.E., Soliman, S.M., Ahmed, A.E., El-Kott, A.F., et al. (2022) Alternatives to Antibiotics for Organic Poultry Production: Types, Modes of Action and Impacts on Bird’s Health and Production. Poultry Science, 101, Article 101696.
https://doi.org/10.1016/j.psj.2022.101696
[41] Robinson, K., Becker, S., Xiao, Y., Lyu, W., Yang, Q., Zhu, H., Yang, H., Zhao, J. and Zhang, G. (2019) Differential Impact of Subtherapeutic Antibiotics and Ionophores on Intestinal Microbiota of Broilers. Microorganisms, 7, Article 282.
https://doi.org/10.3390/microorganisms7090282
[42] Muaz, K., Riaz, M., Akhtar, S., Park, S. and Ismail, A. (2018) Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review. Journal of Food Protection, 81, 619-627.
https://doi.org/10.4315/0362-028X.JFP-17-086
[43] ten Doeschate, R. and Raine, H. (2006) History and Current Use of Feed Additives in the European Union: Legislative and Practical Aspects. 28th Poultry Science Symposium of the World’s Poultry Science Association (UK), Bristol, September 2005, 3-12.
https://doi.org/10.1079/9781845931803.0003
[44] Shehata, A.A., Yalcin, S., Latorre, J.D., Basiouni, S., Attia, Y.A., Abd El-Wahab, A., Visscher, C., El-Seedi, H.R., Huber, C., Hafez, H.M., et al. (2022) Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms, 10, Article 395.
https://doi.org/10.3390/microorganisms10020395
[45] Reuben, R.C., Sarkar, S.L., Roy, P.C., Anwar, A., Hossain, M.A. and Jahid, I.K. (2021) Prebiotics, Probiotics and Postbiotics for Sustainable Poultry Production. World’s Poultry Science Journal, 77, 825-882.
https://doi.org/10.1080/00439339.2021.1960234
[46] Abd El-Hack, M.E., El-Saadony, M.T., Shafi, M.E., Qattan, S.Y., Batiha, G.E., Khafaga, A.F., Abdel-Moneim, A.-M.E. and Alagawany, M. (2020) Probiotics in Poultry Feed: A Comprehensive Review. Journal of Animal Physiology and Animal Nutrition, 104, 1835-1850.
https://doi.org/10.1111/jpn.13454
[47] Soccol, C.R., de Souza Vandenberghe, L.P., Spier, M.R., Medeiros, A.P., Yamaguishi, C.T., De Dea Lindner, J., Pandey, A. and Thomaz-Soccol, V. (2010) The Potential of Probiotics: A Review. Food Technology and Biotechnology, 48, 413-434.
[48] Ricke, S.C., Lee, S.I., Kim, S.A., Park, S.H. and Shi, Z. (2020) Prebiotics and the Poultry Gastrointestinal Tract Microbiome. Poultry Science, 99, 670-677.
https://doi.org/10.1016/j.psj.2019.12.018
[49] Al-Sheraji, S.H., Ismail, A., Manap, M.Y., Mustafa, S., Yusof, R.M. and Hassan, F.A. (2013) Prebiotics as Functional Foods: A Review. Journal of Functional Foods, 5, 1542-1553.
https://doi.org/10.1016/j.jff.2013.08.009
[50] Suskovic, J., Kos, B., Beganovic, J., Lebos Pavunc, A., Habjanic, K. and Matosic, S. (2010) Antimicrobial Activity—The Most Important Property of Probiotic and Starter Lactic Acid Bacteria. Food Technology and Biotechnology, 48, 296-307.
[51] Ahmad, S., Saad, C.R., Mohd Daud, H. and Abdelhadi, Y.M. (2015) Status and Potential of Herbal Applications in Aquaculture: A Review. Iranian Journal of Fisheries Science, 14, 27-44.
[52] Delgado, Y., Cassé, C., Ferrer-Acosta, Y., Suárez-Arroyo, I.J., Rodríguez-Zayas, J., Torres, A., Torres-Martínez, Z., Pérez, D., González, M.J., Velázquez-Aponte, R.A., et al. (2021) Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. Applied Sciences, 11, Article 8477.
https://doi.org/10.3390/app11188477
[53] Zhang-Barber, L., Turner, A. and Barrow, P. (1999) Vaccination for Control of Salmonella in Poultry. Vaccine, 17, 2538-2545.
https://doi.org/10.1016/S0264-410X(99)00060-2
[54] Nyaga, P. (2007) Good Biosecurity Practices in Small Scale Commercial and Scavenging Production Systems in Kenya. FAO.
[55] Jang, H.-J., Lee, H.-J., Yoon, D.-K., Ji, D.-S., Kim, J.-H. and Lee, C.-H. (2018) Antioxidant and Antimicrobial Activities of Fresh Garlic and Aged Garlic By-Products Extracted with Different Solvents. Food Science and Biotechnology, 27, 219-225.
https://doi.org/10.1007/s10068-017-0246-4
[56] Fratianni, F., Ombra, M.N., Cozzolino, A., Riccardi, R., Spigno, P., Tremonte, P., Coppola, R. and Nazzaro, F. (2016) Phenolic Constituents, Antioxidant, Antimicrobial and Anti-Proliferative Activities of Different Endemic Italian Varieties of Garlic (Allium sativum L.). Journal of Functional Foods, 21, 240-248.
https://doi.org/10.1016/j.jff.2015.12.019
[57] Shealy, C.N. (2012) The Healing Remedies Sourcebook: Over 1000 Natural Remedies to Prevent and Cure Common Ailments. Da Capo Lifelong Books, Lebanon.
[58] Zhang, Y., Liu, X., Ruan, J., Zhuang, X., Zhang, X. and Li, Z. (2020) Phytochemicals of Garlic: Promising Candidates for Cancer Therapy. Biomedicine & Pharmacotherapy, 123, Article 109730.
https://doi.org/10.1016/j.biopha.2019.109730
[59] Mirzaei-Aghsaghali, A. (2012) Importance of Medical Herbs in Animal Feeding: A Review. Annals of Biological Research, 3, 918-923.
[60] Subroto, E., Cahyana, Y., Tensiska, M., Lembong, F., Filianty, E., Kurniati, E., Wulandari, D., Saputra, R. and Faturachman, F. (2021) Bioactive Compounds in Garlic (Allium sativum L.) as a Source of Antioxidants and Its Potential to Improve the Immune System: A Review. Food Research, 5, 10-26656.
https://doi.org/10.26656/fr.2017.5(6).042
[61] El-Ratel, I.T., Abdel-Khalek, A.-K.E., Gabr, S.A., Hammad, M.E. and El-Morsy, H.I. (2020) Influence of Allicin Administration on Reproductive Efficiency, Immunity and Lipid Peroxidation of Rabbit Does under High Ambient Temperature. Journal of Animal Physiology and Animal Nutrition, 104, 539-548.
https://doi.org/10.1111/jpn.13316
[62] Adjei-Mensah, B., Oke, E., Ali, M., Hamidu, J. and Tona, K. (2022) Response of Layer Chicks to the Dietary Inclusion of Allicin-Rich Extract. Journal of Applied Poultry Research, 31, Article 100291.
https://doi.org/10.1016/j.japr.2022.100291
[63] Strika, I., Basic, A. and Halilovic, N. (2017) Antimicrobial Effects of Garlic (Allium sativum L.). Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 47, 17-22.
[64] Gardner, C.D., Messina, M., Lawson, L.D. and Farquhar, J.W. (2003) Soy, Garlic, and Ginkgo Biloba: Their Potential Role in Cardiovascular Disease Prevention and Treatment. Current Atherosclerosis Reports, 5, 468-475.
https://doi.org/10.1007/s11883-003-0037-7
[65] Plata-Rueda, A., Martínez, L.C., Santos, M.H.D., Fernandes, F.L., Wilcken, C.F., Soares, M.A., Serrao, J.E. and Zanuncio, J.C. (2017) Insecticidal Activity of Garlic Essential Oil and Their Constituents against the Mealworm Beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Scientific Reports, 7, Article No. 46406.
https://doi.org/10.1038/srep46406
[66] Diaz, J.H. (2016) Chemical and Plant-Based Insect Repellents: Efficacy, Safety, and Toxicity. Wilderness & Environmental Medicine, 27, 153-163.
https://doi.org/10.1016/j.wem.2015.11.007
[67] Boleij, A. and Tjalsma, H. (2012) Gut Bacteria in Health and Disease: A Survey on the Interface between Intestinal Microbiology and Colorectal Cancer. Biological Reviews, 87, 701-730.
https://doi.org/10.1111/j.1469-185X.2012.00218.x
[68] Bhatwalkar, S.B., Mondal, R., Krishna, S.B.N., Adam, J.K., Govender, P. and Anupam, R. (2021) Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Frontiers in Microbiology, 12, Article 1869.
https://doi.org/10.3389/fmicb.2021.613077
[69] Rouf, R., Uddin, S.J., Sarker, D.K., Islam, M.T., Ali, E.S., Shilpi, J.A., Nahar, L., Tiralongo, E. and Sarker, S.D. (2020) Antiviral Potential of Garlic (Allium sativum) and Its Organosulfur Compounds: A Systematic Update of Pre-Clinical and Clinical Data. Trends in Food Science and Technology, 104, 219-234.
https://doi.org/10.1016/j.tifs.2020.08.006
[70] Liu, P., Weng, R., Xu, Y., Feng, Y., He, L., Qian, Y. and Qiu, J. (2020) Metabolic Changes in Different Tissues of Garlic Plant during Growth. Journal of Agricultural and Food Chemistry, 68, 12467-12475.
https://doi.org/10.1021/acs.jafc.0c04178
[71] Pedraza-Chaverri, J., Yam-Canul, P., Chirino, Y.I., Sánchez-González, D.J., Martínez-Martínez, C.M., Cruz, C. and Medina-Campos, O.N. (2008) Protective Effects of Garlic Powder against Potassium Dichromate-Induced Oxidative Stress and Nephrotoxicity. Food and Chemical Toxicology, 46, 619-627.
https://doi.org/10.1016/j.fct.2007.09.088
[72] Li, W.-R., Shi, Q.-S., Dai, H.-Q., Liang, Q., Xie, X.-B., Huang, X.-M., Zhao, G.-Z. and Zhang, L.-X. (2016) Antifungal Activity, Kinetics and Molecular Mechanism of Action of Garlic Oil against Candida albicans. Scientific Reports, 6, Article No. 22805.
https://doi.org/10.1038/srep22805
[73] Ming, L., Li, Z., Li, X., Tang, L. and He, G. (2021) Antiviral Activity of Diallyl Trisulfide against H9N2 Avian Influenza Virus Infection in Vitro and in Vivo. Virology Journal, 18, Article No. 171.
https://doi.org/10.1186/s12985-021-01641-w
[74] Ahmed, T. and Wang, C.-K. (2021) Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules, 26, Article 5028.
https://doi.org/10.3390/molecules26165028
[75] Mehrbod, P., Amini, E. and Tavassoti-Kheiri, M. (2009) Antiviral Activity of Garlic Extract on Influenza Virus. Iranian Journal of Virology, 3, 19-23.
https://doi.org/10.21859/isv.3.1.19
[76] Saravanan, G. and Prakash, J. (2004) Effect of Garlic (Allium sativum) on Lipid Peroxidation in Experimental Myocardial Infarction in Rats. Journal of Ethnopharmacology, 94, 155-158.
https://doi.org/10.1016/j.jep.2004.04.029
[77] Müller, A., Eller, J., Albrecht, F., Prochnow, P., Kuhlmann, K., Bandow, J.E., Slusarenko, A.J. and Leichert, L.I.O. (2016) Allicin Induces Thiol Stress in Bacteria through S-Allylmercapto Modification of Protein Cysteines. Journal of Biological Chemistry, 291, 11477-11490.
https://doi.org/10.1074/jbc.M115.702308
[78] Yewdell, J.W., Bennink, J.R., Smith, G.L. and Moss, B. (1985) Influenza A Virus Nucleoprotein Is a Major Target Antigen for Cross-Reactive Anti-Influenza A Virus Cytotoxic T Lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 82, 1785-1789.
https://doi.org/10.1073/pnas.82.6.1785
[79] Mehrbod, P., Aini, I., Amini, E., Eslami, M., Torabi, A., Bande, F. and Kheiri, M. (2013) Assessment of Direct Immunofluorescence Assay in Detection of Antiviral Effect of Garlic Extract on Influenza Virus. African Journal of Microbiology Research, 7, 2608-2612.
https://doi.org/10.5897/AJMR12.2329
[80] Fleischauer, A.T. and Arab, L. (2001) Garlic and Cancer: A Critical Review of the Epidemiologic Literature. Journal of Nutrition, 131, 1032S-1040S.
https://doi.org/10.1093/jn/131.3.1032S
[81] Fukushima, S., Takada, N., Hori, T., Min, W., Wanibuchi, H. and Yamamoto, S. (2001) Suppression of Chemical Carcinogenesis by Water-Soluble Organosulfur Compounds. Journal of Nutrition, 131, 1049S-1053S.
https://doi.org/10.1093/jn/131.3.1049S
[82] Dong, M., Yang, G., Liu, H., Liu, X., Lin, S., Sun, D. and Wang, Y. (2014) Aged Black Garlic Extract Inhibits HT29 Colon Cancer Cell Growth via the PI3K/Akt Signaling Pathway. Biomedical Reports, 2, 250-254.
https://doi.org/10.3892/br.2014.226
[83] Munday, R. (2012) Harmful and Beneficial Effects of Organic Monosulfides, Disulfides, and Polysulfides in Animals and Humans. Chemical Research in Toxicology, 25, 47-60.
https://doi.org/10.1021/tx200373u
[84] Tang, F.-Y., Chiang, E.-P. and Pai, M.-H. (2010) Consumption of S-Allylcysteine Inhibits the Growth of Human Non-Small-Cell Lung Carcinoma in a Mouse Xenograft Model. Journal of Agricultural and Food Chemistry, 58, 11156-11164.
https://doi.org/10.1021/jf102539k
[85] Guy, J.S. (1998) Virus Infections of the Gastrointestinal Tract of Poultry. Poultry Science, 77, 1166-1175.
https://doi.org/10.1093/ps/77.8.1166
[86] Adere, T. and Mukaria, M. (2023) The Epidemiology of Avian Influenza and Its Significance for Public Health. Journal Healthcare Treatment Development, 3, 48-58.
https://doi.org/10.55529/jhtd.31.48.58
[87] Moustapha, A., Talaki, E., Akourki, A. and Gagara, H. (2023) Impact and Prevalence of Newcastle Disease and Associated Risk Factors in Village Chickens in Southern Niger. Online Journal of Animal and Feed Research, 13, 209-216.
https://doi.org/10.51227/ojafr.2023.32
[88] You, R., Liu, K., Huang, M., Tang, L., Zhang, X., Huang, Y., Zhao, J., Zhao, Y., Ye, L. and Zhang, G. (2023) Identification and Comparison of the Sialic Acid-Binding Domain Characteristics of Avian Coronavirus Infectious Bronchitis Virus Spike Protein. Journal of Virology, 97, e00489-23.
https://doi.org/10.1128/jvi.00489-23
[89] Mosa, M.I., Salem, H.M., Bastamy, M.A. and Amer, M.M. (2023) Pathogenic and Non-Pathogenic Factors; Especially Infectious Bursal Disease Viruses; Affect Chicken Digestive System Microbiota and Methods of Its Evaluation and Recovery: A Review. Egyptian Journal of Veterinary Sciences, 54, 733-760.
[90] Ravikumar, R., Chan, J. and Prabakaran, M. (2022) Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses, 14, Article 1195.
https://doi.org/10.3390/v14061195
[91] Birhane, N. and Fesseha, H. (2020) Vaccine Failure in Poultry Production and Its Control Methods: A Review. Biomedical Journal of Scientific & Technical Research, 29, 22588-22596.
https://doi.org/10.26717/BJSTR.2020.29.004827
[92] Arshad, M.I., Wensman, J.J. and Munir, M. (2023) Immunopathogenesis and Infection Characteristics of Zoonotic Viral Diseases. Frontiers in Cellular and Infection Microbiology, 13, Article 1198392.
https://doi.org/10.3389/fcimb.2023.1198392
[93] Sing, A. (2014) Zoonoses-Infections Affecting Humans and Animals: Focus on Public Health Aspects. Springer, Berlin.
https://doi.org/10.1007/978-94-017-9457-2
[94] Abdelwhab, E.M. and Mettenleiter, T.C. (2023) Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses, 15, Article 980.
https://doi.org/10.3390/v15040980
[95] Chai, H., Liu, Q., Gaudreault, N.N. and Zhang, W. (2023) Zoonotic Diseases Originating from Wildlife: Emergence/Re-Emergence, Evolution, Prevalence, Pathogenesis, Prevention, and Treatment. Frontiers in Microbiology, 14, Article 1165365.
https://doi.org/10.3389/fmicb.2023.1165365
[96] European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch, C., Fusaro, A., Gonzales, J.L., Kuiken, T., Marangon, S., Mirinaviciute, G., Niqueux, é., Stahl, K., et al. (2023) Avian Influenza Overview December 2022-March 2023. EFSA Journal, 21, e07917.
https://doi.org/10.2903/j.efsa.2023.7917
[97] Kobasa, D., Warner, B., Alkie, T., Vendramelli, R., Moffat, E., Tailor, N., Audet, J., Gunawardena, T., Safronetz, D., Mubareka, S., et al. (2023) Transmission of Lethal H5N1 Clade 2.3.4.4b Avian Influenza in Ferrets.
https://doi.org/10.21203/rs.3.rs-2842567/v1
[98] Oscar, T.P. (2023) Poultry Food Assess Risk Model for Salmonella and Chicken Gizzards: II. Illness Dose Step. Journal of Food Protection, 86, Article 100091.
https://doi.org/10.1016/j.jfp.2023.100091
[99] Tariq, S., Samad, A., Hamza, M., Ahmer, A., Muazzam, A., Ahmad, S. and Amhabj, A.M.A. (2022) Salmonella in Poultry: An Overview. International Journal of Multidisciplinary Sciences and Arts, 1, 80-84.
https://doi.org/10.47709/ijmdsa.v1i1.1706
[100] Tellez-Isaias, G., Vuong, C.N., Graham, B.D., Selby, C.M., Graham, L.E., Senas-Cuesta, R., Barros, T.L., Beer, L.C., Coles, M.E., Forga, A.J., et al. (2021) Developing Probiotics, Prebiotics, and Organic Acids to Control Salmonella Spp. in Commercial Turkeys at the University of Arkansas, USA. German Journal of Veterinary Research, 3, 7-12.
https://doi.org/10.51585/gjvr.2021.3.0014
[101] Kowalska, J.D., Nowak, A., Slizewska, K., Stańczyk, M., Lukasiak, M. and Dastych, J. (2020) Anti-Salmonella Potential of New Strains with the Application in the Poultry Industry. Polish Journal of Microbiology, 69, 5-18.
https://doi.org/10.33073/pjm-2020-001
[102] Hoque, M., Mohiuddin, R.B., Khan, M.M.H., Hannan, A. and Alam, M.J. (2019) Outbreak of Salmonella in Poultry of Bangladesh and Possible Remedy. Journal of Advanced Biotechnology and Experimental Therapeutics, 2, 87-97.
https://doi.org/10.5455/jabet.2019.d30
[103] El-Saadony, M.T., Salem, H.M., El-Tahan, A.M., Abd El-Mageed, T.A., Soliman, S.M., Khafaga, A.F., Swelum, A.A., Ahmed, A.E., Alshammari, F.A. and Abd El-Hack, M.E. (2022) The Control of Poultry Salmonellosis Using Organic Agents: An Updated Overview. Poultry Science, 101, Article 101716.
https://doi.org/10.1016/j.psj.2022.101716
[104] Andrew Selaledi, L., Mohammed Hassan, Z., Manyelo, T.G. and Mabelebele, M. (2020) The Current Status of the Alternative Use to Antibiotics in Poultry Production: An African Perspective. Antibiotics, 9, Article 594.
https://doi.org/10.3390/antibiotics9090594
[105] Eid, K. and Iraqi, M. (2014) Effect of Garlic Powder on Growth Performance and Immune Response for Newcastle and Avian Influenza Virus Diseases in Broiler of Chickens. 2nd International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha University, Moshtohor and Hurghada, 8-12 April 2014, 7-13.
[106] Shojai, T.M., Langeroudi, A.G., Karimi, V., Barin, A. and Sadri, N. (2016) The Effect of Allium sativum (Garlic) Extract on Infectious Bronchitis Virus in Specific Pathogen Free Embryonic Egg. Avicenna Journal of Phytomedicine, 6, 458-467.
[107] Ao, X., Yoo, J., Zhou, T., Wang, J., Meng, Q., Yan, L., Cho, J. and Kim, I. (2011) Effects of Fermented Garlic Powder Supplementation on Growth Performance, Blood Profiles and Breast Meat Quality in Broilers. Livestock Science, 141, 85-89.
https://doi.org/10.1016/j.livsci.2011.05.002
[108] Asrat, M., Zeryehun, T., Amha, N. and Urge, M. (2018) Effects of Supplementation of Different Levels of Garlic (Allium sativum) on Egg Production, Egg Quality and Hatchability of White Leghorn Chicken. Livestock Research for Rural Development, 30, 37.
[109] Al-Aqil, A.A. (2016) Effects of Adding Different Dietary Levels of Garlic (Allium sativum) Powder on Productive Performance and Egg Quality of Laying Hens. International Journal of Poultry Science, 15, 151-155.
https://doi.org/10.3923/ijps.2016.151.155
[110] Karangiya, V., Savsani, H., Patil, S.S., Garg, D., Murthy, K., Ribadiya, N. and Vekariya, S. (2016) Effect of Dietary Supplementation of Garlic, Ginger and Their Combination on Feed Intake, Growth Performance and Economics in Commercial Broilers. Veterinary World, 9, 245-250.
https://doi.org/10.14202/vetworld.2016.245-250
[111] Elmowalid, G.A., Abd El-Hamid, M.I., Abd El-Wahab, A.M., Atta, M., Abd El-Naser, G. and Attia, A.M. (2019) Garlic and Ginger Extracts Modulated Broiler Chicks Innate Immune Responses and Enhanced Multidrug Resistant Escherichia coli O78 Clearance. Comparative Immunology, Microbiology & Infectious Diseases, 66, Article 101334.
https://doi.org/10.1016/j.cimid.2019.101334
[112] Jimoh, A., Ibitoye, E., Dabai, Y. and Garba, S. (2013) In Vivo Antimicrobial Potentials of Garlic against Clostridium Perfringens and Its Promotant Effects on Performance of Broiler Chickens. Pakistan Journal of Biological Sciences, 16, 1978-1984.
https://doi.org/10.3923/pjbs.2013.1978.1984
[113] Cai, P., Zhu, Q., Cao, Q., Bai, Y., Zou, H., Gu, J., Yuan, Y., Liu, X., Liu, Z. and Bian, J. (2021) Quercetin and Allicin Can Alleviate the Hepatotoxicity of Lead (Pb) through the PI3K Signaling Pathway. Journal of Agricultural and Food Chemistry, 69, 9451-9460.
https://doi.org/10.1021/acs.jafc.1c03794
[114] Sari, N.F., Ray, P., Rymer, C., Kliem, K.E. and Stergiadis, S. (2022) Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals, 12, Article 2998.
https://doi.org/10.3390/ani12212998
[115] Rana, S., Pal, R., Vaiphei, K., Sharma, S.K. and Ola, R. (2011) Garlic in Health and Disease. Nutrition Research Reviews, 24, 60-71.
https://doi.org/10.1017/S0954422410000338
[116] El-Khayat, Z., Rasheed, W., Ramzy, T., Hussein, J., Agaiby, M., Morsy, S., Morsy, F. and Shaffie, N. (2010) Protective Effect of Garlic Oil against Liver Injury in Experimental Animals. Journal of Medicinal Plants Research, 4, 2359-2369.
[117] Shang, A., Cao, S.-Y., Xu, X.-Y., Gan, R.-Y., Tang, G.-Y., Corke, H., Mavumengwana, V. and Li, H.-B. (2019) Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods, 8, Article 246.
https://doi.org/10.3390/foods8070246
[118] Amagase, H. (2006) Clarifying the Real Bioactive Constituents of Garlic. The Journal of Nutrition, 136, 716S-725S.
https://doi.org/10.1093/jn/136.3.716S
[119] El-Barbary, M.I. (2016) Detoxification and Antioxidant Effects of Garlic and Curcumin in Oreochromis niloticus Injected with Aflatoxin B1 with Reference to Gene Expression of Glutathione Peroxidase (GPx) by RT-PCR. Fish Physiology and Biochemistry, 42, 617-629.
https://doi.org/10.1007/s10695-015-0164-4
[120] Sahidur, M., Islam, I. and Jahurul, M. (2023) Garlic (Allium sativum) as a Natural Antidote or a Protective Agent against Diseases and Toxicities: A Critical Review. Food Chemistry Advances, 3, Article 100353.
https://doi.org/10.1016/j.focha.2023.100353
[121] Arify, T., Valavan, S.E., Manimaran, K., Sundaresan, A. and Varun, A. (2018) Effect of Supplementation of Garlic (Allium sativum) and Nilavembu (Andrographis paniculata) on Hematological and Serum Biochemical Parameters of Commercial Broiler Chicken. International Journal of Current Microbiology and Applied Sciences, 7, 3649-3656.
https://doi.org/10.20546/ijcmas.2018.710.422
[122] El-Saber Batiha, G., Magdy Beshbishy, A., Wasef, L.G., Elewa, Y.H., Al-Sagan, H.A., Abd El-Hack, M.E., Taha, A.E., Abd-Elhakim, Y.M. and Prasad Devkota, H. (2020) Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 12, Article 872.
https://doi.org/10.3390/nu12030872
[123] Navidshad, B., Darabighane, B. and Malecky, M. (2018) Garlic: An Alternative to Antibiotics in Poultry Production: A Review. Iranian Journal of Applied Animal Science, 8, 9-17.
[124] Sarfraz, M., Nasim, M.J., Jacob, C. and Gruhlke, M.C. (2020) Efficacy of Allicin against Plant Pathogenic Fungi and Unveiling the Underlying Mode of Action Employing Yeast Based Chemogenetic Profiling Approach. Applied Sciences, 10, Article 2563.
https://doi.org/10.3390/app10072563
[125] Ownagh, A., Fallahi, M., Rahman, B. and Mohammadzadeh, D. (2015) Effect of Savory Essential Oil, Garlic Powder, and Garlic Aqueous Extract on Fungal Load of Poultry Feed. Journal of Mycology Research, 2, 23-30.
[126] Prasad, G. and Sharma, V. (1981) Antifungal Property of Garlic (Allium sativum Linn.) in Poultry Feed Substrate. Poultry Science, 60, 541-545.
https://doi.org/10.3382/ps.0600541
[127] Verma, T., Aggarwal, A., Dey, P., Chauhan, A.K., Rashid, S., Chen, K.-T. and Sharma, R. (2023) Medicinal and Therapeutic Properties of Garlic, Garlic Essential Oil, and Garlic-Based Snack Food: An Updated Review. Frontiers in Nutrition, 10, Article 1120377.
https://doi.org/10.3389/fnut.2023.1120377
[128] Aulina, A., Bahi, M., Eriana, C.N. and Sriwati, R. (2019) Fungicidal Activity of Garlic (Allium sativum) Bulbs Extracts against Plants Phatogenic Fungi. Jurnal Hama dan Penyakit Tumbuhan Tropika, 19, 23-32.
https://doi.org/10.23960/j.hptt.11923-32
[129] Kothari, D., Lee, W.-D., Niu, K.-M. and Kim, S.-K. (2019) The Genus Allium as Poultry Feed Additive: A Review. Animals, 9, Article 1032.
https://doi.org/10.3390/ani9121032
[130] Krstin, S., Sobeh, M., Braun, M.S. and Wink, M. (2018) Tulbaghia violacea and Allium ursinum Extracts Exhibit Anti-Parasitic and Antimicrobial Activities. Molecules, 23, Article 313.
https://doi.org/10.3390/molecules23020313
[131] Waqas, M., Akhtar, R., Akbar, H., Lateef, M., Rashid, I. and Ijaz, M. (2018) Evaluation of Anti-Coccidial Activity of Different Extraction Products of Allium sativum (Garlic) in Broilers. Journal of the Hellenic Veterinary Medical Society, 69, 1055-1058.
https://doi.org/10.12681/jhvms.18872
[132] Adulugba, I., Goselle, O., Ajayi, O. and Tanko, J. (2017) Development of a Potent Anti-Coccidial Drug: A Phyto-Synthetic Approach. American Journal of Phytomedicine and Clinical Therapeutics, 5, 2.
[133] Adulugba, I., Goselle, O., Ajayi, O., Pam, K., Friday, S. and Tanko, J. (2017) Phyto-Synthetic Combination as Great Enhancers of Haematological Parameters: A Case Study in Poultry. American Journal of Phytomedicine and Clinical Therapeutics, 5, 9.
[134] Adjei-Mensah, B. and Atuahene, C. (2023) Avian Coccidiosis and Anticoccidial Potential of Garlic (Allium sativum L.) in Broiler Production: A Review. Journal of Applied Poultry Research, 32, Article 100314.
https://doi.org/10.1016/j.japr.2022.100314
[135] Ali, M., Chand, N., Khan, R.U., Naz, S. and Gul, S. (2019) Anticoccidial Effect of Garlic (Allium sativum) and Ginger (Zingiber officinale) against Experimentally Induced Coccidiosis in Broiler Chickens. Journal of Applied Animal Research, 47, 79-84.
https://doi.org/10.1080/09712119.2019.1573731
[136] El-Banna, H., Abd El Latif, A. and Soliman, M. (2012) Anticoccidial Activity of Allium sativum and Aloe vera in Broilers. International Journal for Agro Veterinary and Medical Sciences, 7, 117-125.
[137] El-Khtam, A., Abd El Latif, A. and El-Hewaity, M. (2014) Efficacy of Turmeric (Curcuma longa) and Garlic (Allium sativum) on Eimeria Species in Broilers. International Journal of Basic and Applied Sciences, 3, 349-356.
https://doi.org/10.14419/ijbas.v3i3.3142
[138] Fallah, R. (2015) Effect of Adding Aloe vera Gel and Garlic Powder on Carcass Characteristic and Internal Organ Mass of Broiler Chickens. Global Journal of Animal Scientific Research, 3, 136-141.
[139] Velkers, F., Dieho, K., Pecher, F., Vernooij, J., Van Eck, J. and Landman, W. (2011) Efficacy of Allicin from Garlic against Ascaridia galli Infection in Chickens. Poultry Science, 90, 364-368.
https://doi.org/10.3382/ps.2010-01090
[140] Tesfaye, A. (2021) Revealing the Therapeutic Uses of Garlic (Allium sativum) and Its Potential for Drug Discovery. The Scientific World Journal, 2021, Article ID: 8817288.
https://doi.org/10.1155/2021/8817288
[141] Burt, D.W. (2005) Chicken Genome: Current Status and Future Opportunities. Genome Research, 15, 1692-1698.
https://doi.org/10.1101/gr.4141805

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.