Exact Traveling Wave Solutions to Phi-4 Equation and Joseph-Egri (TRLW) Equation and Calogro-Degasperis (CD) Equation by Modified (G'/G2)-Expansion Method

Abstract

In this study, we will introduce the modified (G'/G2)-expansion method to explore some of the exact traveling wave solutions of some nonlinear partial differential equations namely, Phi-4 equation, Joseph-Egri (TRLW) equation, and Calogro-Degasperis (CD) equation. As a result, we have obtained solutions for the equations expressed in terms of trigonometric, hyperbolic and rational functions. Moreover, some selected solutions are plotted using some specific values for the parameters.

Share and Cite:

Al-Harbi, M. , Al-Hamdan, W. and Wazzan, L. (2023) Exact Traveling Wave Solutions to Phi-4 Equation and Joseph-Egri (TRLW) Equation and Calogro-Degasperis (CD) Equation by Modified (G'/G2)-Expansion Method. Journal of Applied Mathematics and Physics, 11, 2103-2120. doi: 10.4236/jamp.2023.117133.

1. Introduction

The world around us is inherently nonlinear. A large part of equations is nonlinear partial differential equations (NPDEs), which can be utilized to describe many important and sophisticated phenomena in physics, mathematical physics, engineering, and other various scientific fields. It is not easy to solve these equations, but exploration of their exact solutions becomes quite prominent due to the efficiency and reliability of symbolic software packages such as Maple or Mathematica.

In the past decades, authors constructed and developed various powerful and efficient methods for finding exact solutions of (NPDEs) with aid of symbolic software such as, the tanh-function method [1] [2] , sine-cosine function method [3] [4] , Hirota bilinear method [5] [6] , homogeneous balance method [7] [8] , the exp-function method [9] [10] , the sub-equation method, F-expansion method [11] [12] , (1/G')-expansion method [13] , (G'/G, 1/G)-expansion method [14] [15] , (G'/G)-expansion method [16] [17] , and so on.

Recently, the (G'/G2)-expansion method [18] [19] have received a lot of attention for number of authors who work on the method to construct exact solutions of (NPDEs) in applied sciences and engineering. The modified (G'/G2)-expansion method [20] [21] [22] has been used to find solutions for certain mathematical problems.

This work is summarized as follows. In Section 2, the description of the modified (G'/G2)-expansion method is given. In Section 3, we apply the method to Phi-4 equation [23] , Joseph-Egri (TRLW) equation [24] [25] , and Calogro-Degasperis (CD) equation [26] to obtain some of their exact traveling wave solutions. Finally, conclusions and some remarks have been presented.

2. Description of the Method

Consider a general nonlinear partial differential equation (PDE) in the form:

P ( u , u t , u x , u y , u t t , u x x , u y y , u t x y , ) = 0, (1)

where u = u ( x , y , t , ) is an unknown function, P is a polynomial in u ( x , y , t , ) and its partial derivatives.

• First step

Reduction of Equation (1) to a nonlinear ordinary differential equation by introducing the traveling wave variable ξ = k ( x + y + ) V t , where t is a real positive number, k is the wave number and V is the velocity of travelling wave, we have:

Q ( U , V U , k U , k U , V 2 U , k 2 U , k 2 U , V k 2 U , ) = 0, (2)

where U ( ξ ) = u ( x , y , t , ) and Q is a polynomial of U and it's derivatives with respect to ξ .

• Second step

Assume that the traveling wave solution of Equation (2) can be expressed by a polynomial in G G 2 as follows:

U ( ξ ) = i = 0 N a i ( G G 2 ) i + i = 1 N b i ( G G 2 ) i , (3)

where a i ( i = 0 , 1 , 2 , , N ) and b i ( i = 1 , 2 , , N ) are constants which determined later and G = G ( ξ ) satisfies the Riccati equation:

( G G 2 ) = ρ ( G G 2 ) 2 + μ ( G G 2 ) + σ , (4)

ρ , μ and σ are arbitrary constants.

• Third step

Calculate the value of the positive integer N by balancing the highest order nonlinear terms with the highest order derivatives appearing in Equation (2).

• Fourth step

The general solution of Equation (4), has five possible solutions as follows:

G G 2 = { μ 2 ρ Δ 2 ρ ( A sinh ( 1 2 Δ ξ ) + B cosh ( 1 2 Δ ξ ) A cosh ( 1 2 Δ ξ ) + B sinh ( 1 2 Δ ξ ) ) , if μ 0 , Δ 0 , μ 2 ρ Δ 2 ρ ( A sin ( 1 2 Δ ξ ) + B cos ( 1 2 Δ ξ ) A cos ( 1 2 Δ ξ ) + B sin ( 1 2 Δ ξ ) ) , if μ 0 , Δ < 0 , σ ρ ( A cos ( σ ρ ξ ) + B sin ( σ ρ ξ ) A sin ( σ ρ ξ ) + B cos ( σ ρ ξ ) ) , if σ ρ > 0 , μ = 0 , | σ ρ | ρ ( A sinh ( 2 | σ ρ | ξ ) + A cosh ( 2 | σ ρ | ξ ) + B A sinh ( 2 | σ ρ | ξ ) + A cosh ( 2 | σ ρ | ξ ) B ) , if σ ρ < 0 , μ = 0 , A ρ ( A ξ + B ) , if σ = 0 , μ = 0 , ρ 0. (5)

where A, B are constants and Δ = μ 2 4 ρ σ .

• Fifth step

Using Equation (4) to calculate the derivatives then substituting them and

Equation (3) into Equation (2) then collecting all terms with same power of G G 2

and solving the system of algebraic equations by computational software such as Maple. Finally use Equation (5) with the results obtained to derive the exact solutions of Equation (1).

3. Applications

In this section, we will find exact traveling wave solutions to Phi-4 equation, Joseph-Egri (TRLW) equation and Calogro-Degasperis (CD) equation by applying the modified (G'/G2)-expansion method.

3.1. First Application

Consider the Phi-4 equation in the form:

u t t u x x + m 2 u + c u 3 = 0 , (6)

which has a significant role in the study on the nuclear and particle physics, where m and c are real valued constants. Using the transformation u ( x , t ) = U ( ξ ) where ξ = k x V t , Equation (6) changed into an ODE equation of the form:

( V 2 k 2 ) U + m 2 U + c U 3 = 0. (7)

Balancing the highest order derivative term U and nonlinear term U 3 in Equation (7), we obtain N = 1 . The solution of Equation (7) will be in the following form:

U ( ξ ) = a 0 + a 1 ( G G 2 ) + b 1 ( G G 2 ) 1 (8)

a 0 , a 1 and b 1 are constants to be determined later. The derivatives U and U compute as follows:

U = a 1 ρ ( G G 2 ) 2 + a 1 μ ( G G 2 ) b 1 ρ + a 1 σ b 1 μ ( G G 2 ) 1 b 1 σ ( G G 2 ) 2 , (9)

U = 2 a 1 ρ 2 ( G G 2 ) 3 + 3 a 1 μ ρ ( G G 2 ) 2 + ( a 1 μ 2 + 2 a 1 ρ σ ) ( G G 2 ) + b 1 μ ρ + a 1 μ σ + ( b 1 μ 2 + 2 b 1 σ ρ ) ( G G 2 ) 1 + 3 b 1 σ μ ( G G 2 ) 2 + 2 b 1 σ 2 ( G G 2 ) 3 . (10)

Now, substituting Equation (8) and Equation (10) in Equation (7) we will get a polynomial of degree three in ( G G 2 ) , since the polynomial is equal to zero then each of its coefficients are equal to zero, as follows:

( G G 2 ) 3 : ( 2 ( V 2 k 2 ) a 1 ρ 2 + c a 1 3 ) = 0 , ( G G 2 ) 2 : ( 3 ( V 2 k 2 ) a 1 μ ρ + 3 c a 0 a 1 2 ) = 0 , ( G G 2 ) 1 : ( V 2 k 2 ) ( a 1 μ 2 + 2 a 1 ρ σ ) + m 2 a 1 + c ( b 1 a 1 2 + 2 a 0 2 a 1 + a 1 ( a 0 2 + 2 b 1 a 1 ) ) = 0 , ( G G 2 ) 0 : ( V 2 k 2 ) ( b 1 μ ρ + a 1 μ σ ) + m 2 a 0 + c ( 4 b 1 a 0 a 1 + a 0 ( a 0 2 + 2 b 1 a 1 ) ) = 0 ,

( G G 2 ) 1 : ( V 2 k 2 ) ( b 1 μ 2 + 2 b 1 σ ρ ) + m 2 b 1 + c ( b 1 ( a 0 2 + 2 b 1 a 1 ) + 2 a 0 2 b 1 + a 1 b 1 2 ) = 0 , ( G G 2 ) 2 : 3 ( V 2 k 2 ) b 1 σ μ + 3 c b 1 2 a 0 = 0 , ( G G 2 ) 3 : 2 ( V 2 k 2 ) b 1 σ 2 + c b 1 3 = 0. (11)

Solving the above algebraic equations with the assistance of Maple, we obtain the following results:

Result 1.

V = ± k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ , a 0 = m μ ( Δ ) c s , a 1 = 0 , b 1 = 2 s σ m . (12)

V = ± k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ , a 0 = m μ ( Δ ) c s , a 1 = 0 , b 1 = 2 s σ m . (13)

Result 2.

V = ± k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ , a 0 = m μ ( Δ ) c s , a 1 = 2 s ρ m , b 1 = 0. (14)

V = ± k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ , a 0 = m μ ( Δ ) c s , a 1 = 2 s ρ m , b 1 = 0. (15)

where s = 1 c Δ . Substituting (12) and (13) into the solution form (8) and using (5), we get the following solutions:

U 1 , 1 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) m μ ( Δ ) c s

U 1 , 2 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) m μ ( Δ ) c s

U 1 , 3 ( ξ ) = 4 c ρ σ σ m ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) ) 2 σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) )

U 1 , 4 ( ξ ) = 4 c ρ σ σ m ρ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B ) 2 ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B )

U 2 , 1 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) + m μ ( Δ ) c s

U 2 , 2 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) + m μ ( Δ ) c s

U 2 , 3 ( ξ ) = 4 c ρ σ σ m ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) ) 2 σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) )

U 2 , 4 ( ξ ) = 4 c ρ σ σ m ρ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B ) 2 ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B )

where ξ = k x k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ t ,

U 3 , 1 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) m μ ( Δ ) c s

U 3 , 2 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) m μ ( Δ ) c s

U 3 , 3 ( ξ ) = 4 c ρ σ σ m ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) ) 2 σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) )

U 3 , 4 ( ξ ) = 4 c ρ σ σ m ρ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B ) 2 ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B )

U 4 , 1 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) + m μ ( Δ ) c s

U 4 , 2 ( ξ ) = 2 s σ m μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) + m μ ( Δ ) c s

U 4 , 3 ( ξ ) = 4 c ρ σ σ m ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) ) 2 σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) )

U 4 , 4 ( ξ ) = 4 c ρ σ σ m ρ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B ) 2 ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B )

where ξ = k x + k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ t . Now, substituting (14) and (15) into the solution form (8) and using (5), we get the following solutions:

U 5 , 1 ( ξ ) = m μ ( Δ ) c s + 2 s ρ m ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) )

U 5 , 2 ( ξ ) = m μ ( Δ ) c s + 2 s ρ m ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) )

U 5 , 3 ( ξ ) = 4 c ρ σ ρ m σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) ) 2 ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) )

U 5 , 4 ( ξ ) = 4 c ρ σ m ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B ) 2 ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B )

U 6 , 1 ( ξ ) = m μ ( Δ ) c s 2 s ρ m ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) )

U 6 , 2 ( ξ ) = m μ ( Δ ) c s 2 s ρ m ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) )

U 6 , 3 ( ξ ) = 4 c ρ σ ρ m σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) ) 2 ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) )

U 6 , 4 ( ξ ) = 4 c ρ σ m ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B ) 2 ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B )

where ξ = k x k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ t ,

U 7 , 1 ( ξ ) = m μ ( Δ ) c s + 2 s ρ m ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) )

U 7 , 2 ( ξ ) = m μ ( Δ ) c s + 2 s ρ m ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) )

U 7 , 3 ( ξ ) = 4 c ρ σ ρ m σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) ) 2 ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) )

U 7 , 4 ( ξ ) = 4 c ρ σ m ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B ) 2 ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B )

U 8 , 1 ( ξ ) = m μ ( Δ ) c s 2 s ρ m ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) )

U 8 , 2 ( ξ ) = m μ ( Δ ) c s 2 s ρ m ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) )

U 8 , 3 ( ξ ) = 4 c ρ σ ρ m σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) ) 2 ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) )

U 8 , 4 ( ξ ) = 4 c ρ σ m ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B ) 2 ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B )

where ξ = k x + k 2 μ 2 + 4 k 2 ρ σ 2 m 2 Δ t . Finally, using the fact that

u i , j ( x , t ) = U i , j ( ξ ) , there are two indices i and j, where i represents the number of solutions of the ODE while j represents the number of solutions of the PDE (As an example of one of the above solutions is shown in Figure 1).

3.2. Second Application

Consider the Joseph-Egri (TRLW) equation in the form:

u t + u x + α u u x + u x t t = 0 , (16)

which an important model to describe the spreading wave, where α is a nonzero constant. Using the transformation u ( x , t ) = U ( ξ ) where ξ = k x V t , Equation (16) changed into an ODE equation of the form:

( k V ) U + α k U U + k V 2 U = 0. (17)

Figure 1. The solution u 1,3 ( x , t ) of Phi-4 equation with A = 1 , B = 2 , k = 1 , ρ = 10 , σ = 0.2 , m = 1 and c = 1 .

Balancing the highest order derivative term U and nonlinear term U U in Equation (17), we obtain N = 2 . The solution of Equation (17) will be in the following form:

U ( ξ ) = b 2 ( G G 2 ) 2 + b 1 ( G G 2 ) 1 + a 0 + a 1 ( G G 2 ) + a 2 ( G G 2 ) 2 (18)

a 0 , a 1 , a 2 , b 1 and b 2 are constants to be determined later. Now, substituting Equation (18) and its derivatives in Equation (17) we will get a polynomial of

degree five in ( G G 2 ) , since the polynomial is equal to zero then each of its coefficients are equal to zero, as follows:

( G G 2 ) 5 : ( 24 k V 2 a 2 ρ 3 + 2 α k a 2 2 ρ ) = 0,

( G G 2 ) 4 : 2 α k a 1 a 2 ρ + α k a 2 ( 2 a 2 μ + a 1 ρ ) + k V 2 ( ( 3 ( 4 a 2 μ + 2 a 1 ρ ) ρ + 18 a 2 ρ μ ) ρ + 24 a 2 ρ 2 μ ) = 0,

( G G 2 ) 3 : 2 ( k V ) a 2 ρ + 2 α k a 0 a 2 ρ + α k a 1 ( 2 a 2 μ + a 1 ρ ) + α k a 2 ( a 1 μ + 2 a 2 σ ) + k V 2 ( ( 2 ( a 1 μ + 2 a 2 σ ) ρ + 2 ( 4 a 2 μ + 2 a 1 ρ ) μ + 12 a 2 ρ σ ) ρ ) + k V 2 ( ( 3 ( 4 a 2 μ + 2 a 1 ρ ) ρ + 18 a 2 ρ μ ) μ + 24 a 2 ρ 2 σ ) = 0,

( G G 2 ) 2 : ( k V ) ( 2 a 2 μ + a 1 ρ ) + 2 α k b 1 a 2 ρ + α k a 0 ( 2 a 2 μ + a 1 ρ ) + α k a 1 ( a 1 μ + 2 a 2 σ ) + α k a 2 ( b 1 ρ + a 1 σ ) + k V 2 ( ( ( a 1 μ + 2 a 2 σ ) μ + ( 4 a 2 μ + 2 a 1 ρ ) σ ) ρ ) + k V 2 ( ( 2 ( a 1 μ + 2 a 2 σ ) ρ + 2 ( 4 a 2 μ + 2 a 1 ρ ) μ + 12 a 2 ρ σ ) μ ) + k V 2 ( ( 3 ( 4 a 2 μ + 2 a 1 ρ ) ρ + 18 a 2 ρ μ ) σ ) = 0 ,

( G G 2 ) 1 : ( k V ) ( a 1 μ + 2 a 2 σ ) + 2 α k b 2 a 2 ρ + α k b 1 ( 2 a 2 μ + a 1 ρ ) + α k a 0 ( a 1 μ + 2 a 2 σ ) + α k a 1 ( b 1 ρ + a 1 σ ) + α k a 2 ( b 1 μ 2 b 2 ρ ) + k V 2 ( ( ( a 1 μ + 2 a 2 σ ) μ + ( 4 a 2 μ + 2 a 1 ρ ) σ ) μ ) + k V 2 ( ( 2 ( a 1 μ + 2 a 2 σ ) ρ + 2 ( 4 a 2 μ + 2 a 1 ρ ) μ + 12 a 2 ρ σ ) σ ) = 0,

( G G 2 ) 0 : ( k V ) ( b 1 ρ + a 1 σ ) + α k b 2 ( 2 a 2 μ + a 1 ρ ) + α k b 1 ( a 1 μ + 2 a 2 σ ) + α k a 0 ( b 1 ρ + a 1 σ ) + α k a 1 ( b 1 μ 2 b 2 ρ ) + α k a 2 ( 2 b 2 μ b 1 σ ) + k V 2 ( ( ( 4 b 2 μ + 2 b 1 σ ) ρ ( b 1 μ + 2 b 2 ρ ) μ ) ρ ) + k V 2 ( ( ( a 1 μ + 2 a 2 σ ) μ + ( 4 a 2 μ + 2 a 1 ρ ) σ ) σ ) = 0 ,

( G G 2 ) 1 : ( k V ) ( b 1 μ 2 b 2 ρ ) + α k b 2 ( a 1 μ + 2 a 2 σ ) + α k b 1 ( b 1 ρ + a 1 σ ) + α k a 0 ( b 1 μ 2 b 2 ρ ) + α k a 1 ( 2 b 2 μ b 1 σ ) 2 α k a 2 b 2 σ + k V 2 ( ( 12 b 2 σ ρ 2 ( 4 b 2 μ + 2 b 1 σ ) μ 2 ( b 1 μ + 2 b 2 ρ ) σ ) ρ ) + k V 2 ( ( ( 4 b 2 μ + 2 b 1 σ ) ρ ( b 1 μ + 2 b 2 ρ ) μ ) μ ) = 0,

( G G 2 ) 2 : ( k V ) ( b 1 μ 2 b 2 ρ ) + α k b 2 ( a 1 μ + 2 a 2 σ ) + α k b 1 ( b 1 ρ + a 1 σ ) + α k a 0 ( b 1 μ 2 b 2 ρ ) + α k a 1 ( 2 b 2 μ b 1 σ ) 2 α k a 2 b 2 σ + k V 2 ( ( 12 b 2 σ ρ 2 ( 4 b 2 μ + 2 b 1 σ ) μ 2 ( b 1 μ + 2 b 2 ρ ) σ ) ρ ) + k V 2 ( ( ( 4 b 2 μ + 2 b 1 σ ) ρ ( b 1 μ + 2 b 2 ρ ) μ ) μ ) = 0,

( G G 2 ) 3 : 2 ( k V ) b 2 σ + α k b 2 ( b 1 μ 2 b 2 ρ ) + α k b 1 ( 2 b 2 μ b 1 σ ) 2 α k a 0 b 2 σ + k V 2 ( 24 b 2 σ 2 ρ + ( 18 b 2 σ μ 3 ( 4 b 2 μ + 2 b 1 σ ) σ ) μ ) + k V 2 ( ( 12 b 2 σ ρ 2 ( 4 b 2 μ + 2 b 1 σ ) μ 2 ( b 1 μ + 2 b 2 ρ ) σ ) σ ) = 0,

( G G 2 ) 4 : α k b 2 ( 2 b 2 μ b 1 σ ) 2 α k b 1 b 2 σ + k V 2 ( 24 b 2 σ 2 μ + ( 18 b 2 σ μ 3 ( 4 b 2 μ + 2 b 1 σ ) σ ) σ ) = 0 ,

( G G 2 ) 5 : 24 k V 2 b 2 σ 3 2 α k b 2 2 σ = 0.

Solving the above algebraic equations with the assistance of Maple, we obtain the following results:

Result 1.

a 0 = V 2 k μ 2 + s α k , a 1 = 12 V 2 μ ρ α , a 2 = 12 V 2 ρ 2 α , b 1 = 0 , b 2 = 0. (19)

Result 2.

a 0 = V 2 k μ 2 + s α k , a 1 = 0 , a 2 = 0 , b 1 = 12 V 2 μ σ α , b 2 = 12 V 2 σ 2 α . (20)

where s = 8 V 2 k ρ σ V + k . Substituting (19) into the solution form (18) and using (5), we get the following solutions:

U 1 , 1 ( ξ ) = V 2 k μ 2 + s α k 12 V 2 μ ρ ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) ) α 12 V 2 ρ 2 ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) ) 2 α

U 1 , 2 ( ξ ) = V 2 k μ 2 + s α k 12 V 2 μ ρ ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) ) α 12 V 2 ρ 2 ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ρ ξ 2 ) ) 2 ρ ( A sin ( μ 2 + 4 σ ρ ξ 2 ) + B cos ( μ 2 + 4 σ ρ ξ 2 ) ) ) 2 α

U 1 , 3 ( ξ ) = s α k 12 V 2 ρ σ ( A cos ( σ ρ ξ ) + B sin ( σ ρ ξ ) ) 2 α ( A sin ( σ ρ ξ ) + B cos ( σ ρ ξ ) ) 2

U 1,4 ( ξ ) = s α k + 12 V 2 ρ σ ( A sinh ( 2 σ ρ ξ ) + A cosh ( 2 σ ρ ξ ) + B ) 2 α ( A sinh ( 2 σ ρ ξ ) + A cosh ( 2 σ ρ ξ ) B ) 2

U 1,5 ( ξ ) = k V α k 12 V 2 A 2 α ( A ξ + B ) 2

Now, substituting (20) into the solution form (18) and using (5), we get the following solutions:

U 2 , 1 ( ξ ) = 12 V 2 σ 2 α ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) ) 2

12 V 2 μ σ α ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) ) V 2 k μ 2 + s α k

U 2,2 ( ξ ) = 12 V 2 σ 2 α ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) ) 2 12 V 2 μ σ α ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) ) V 2 k μ 2 + s α k

U 2 , 3 ( ξ ) = 12 V 2 σ ρ ( A sin ( σ ρ ξ ) + B cos ( σ ρ ξ ) ) 2 α ( A cos ( σ ρ ξ ) + B sin ( σ ρ ξ ) ) 2 s α k

U 2 , 4 ( ξ ) = 12 V 2 σ ρ ( A sinh ( 2 σ ρ ξ ) + A cosh ( 2 σ ρ ξ ) B ) 2 α ( A sinh ( 2 σ ρ ξ ) + A cosh ( 2 σ ρ ξ ) + B ) 2 s α k

Finally, using the fact that u i , j ( x , t ) = U i , j ( ξ ) (As an example of one of the above solutions is shown in Figure 2).

Figure 2. The solution u 1,5 ( x , t ) of TRLW equation with A = 1 , B = 2 , k = 1 , V = 1 and α = 1 .

3.3. Third Application

Consider the Calogro-Degasperis (CD) equation in the form:

u x t 4 u x u x x 2 u y u x x + u x x x y = 0, (21)

which arises in fluid mechanics, solid state physics and plasma physics. Using the transformation u ( x , y , t ) = U ( ξ ) where ξ = k ( x + y V t ) , Equation (21) changed into an ODE equation of the form:

V U 4 k U U 2 k U U + k 2 U = 0. (22)

Balancing the highest order derivative term U and nonlinear term U U in Equation (22), we obtain N = 1 . The solution of Equation (22) will be in the following form:

U ( ξ ) = a 0 + a 1 ( G G 2 ) + b 1 ( G G 2 ) 1 (23)

a 0 , a 1 and b 1 are constants to be determined later. Now, substituting Equation (23) and its derivatives in Equation (22) we will get a polynomial of degree five

in ( G G 2 ) , since the polynomial is equal to zero then each of its coefficients are equal to zero, as follows:

( G G 2 ) 5 : 24 a 1 ρ 4 k 2 12 a 1 2 ρ 3 k = 0 ,

( G G 2 ) 4 : 60 a 1 μ ρ 3 k 2 30 a 1 2 μ ρ 2 k = 0 ,

( G G 2 ) 3 : 6 ( 2 ( b 1 ρ + a 1 σ ) a 1 ρ 2 + 3 a 1 2 μ 2 ρ + a 1 ρ ( a 1 μ 2 + 2 a 1 ρ σ ) ) k 2 a 1 ρ 2 V + ( ( 2 ( a 1 μ 2 + 2 a 1 ρ σ ) ρ + 12 a 1 μ 2 ρ + 12 a 1 ρ 2 σ ) ρ + 36 a 1 μ 2 ρ 2 + 24 a 1 ρ 3 σ ) k 2 = 0 ,

( G G 2 ) 2 : 6 ( 2 b 1 μ a 1 ρ 2 + 3 ( b 1 ρ + a 1 σ ) a 1 μ ρ + a 1 μ ( a 1 μ 2 + 2 a 1 ρ σ ) + a 1 ρ ( b 1 μ ρ + a 1 μ σ ) ) k + ( ( ( a 1 μ 2 + 2 a 1 ρ σ ) μ + 6 a 1 μ ρ σ ) ρ + ( 2 ( a 1 μ 2 + 2 a 1 ρ σ ) ρ + 12 a 1 μ 2 ρ + 12 a 1 ρ 2 σ ) μ + 36 a 1 μ ρ 2 σ ) k 2 3 a 1 μ ρ V = 0 ,

( G G 2 ) 1 : 6 ( 2 b 1 σ a 1 ρ 2 3 b 1 μ 2 a 1 ρ + ( b 1 ρ + a 1 σ ) ( a 1 μ 2 + 2 a 1 ρ σ ) + a 1 μ ( b 1 μ ρ + a 1 μ σ ) + a 1 ρ ( b 1 μ 2 + 2 b 1 σ ρ ) ) k + ( ( ( a 1 μ 2 + 2 a 1 ρ σ ) μ + 6 a 1 μ ρ σ ) μ + ( 2 ( a 1 μ 2 + 2 a 1 ρ σ ) ρ + 12 a 1 μ 2 ρ + 12 a 1 ρ 2 σ ) σ ) k 2 ( a 1 μ 2 + 2 a 1 ρ σ ) V = 0 ,

( G G 2 ) 0 : 6 ( b 1 μ ( a 1 μ 2 + 2 a 1 ρ σ ) + ( b 1 ρ + a 1 σ ) ( b 1 μ ρ + a 1 μ σ ) + a 1 μ ( b 1 μ 2 + 2 b 1 σ ρ ) ) k + ( ( 6 b 1 σ μ ρ ( b 1 μ 2 2 b 1 σ ρ ) μ ) ρ + ( ( a 1 μ 2 + 2 a 1 ρ σ ) μ + 6 a 1 μ ρ σ ) σ ) k 2 ( b 1 μ ρ + a 1 μ σ ) V = 0 ,

( G G 2 ) 1 : 6 ( b 1 σ ( a 1 μ 2 + 2 a 1 ρ σ ) b 1 μ ( b 1 μ ρ + a 1 μ σ ) + ( b 1 ρ + a 1 σ ) ( b 1 μ 2 + 2 b 1 σ ρ ) + 3 a 1 μ 2 b 1 σ + 2 a 1 ρ b 1 σ 2 ) k + ( ( 12 b 1 σ 2 ρ + 12 b 1 σ μ 2 2 ( b 1 μ 2 2 b 1 σ ρ ) σ ) ρ + ( 6 b 1 σ μ ρ ( b 1 μ 2 2 b 1 σ ρ ) μ ) μ ) k 2 ( b 1 μ 2 + 2 b 1 σ ρ ) V = 0 ,

( G G 2 ) 2 : 6 ( b 1 σ ( b 1 μ ρ + a 1 μ σ ) b 1 μ ( b 1 μ 2 + 2 b 1 σ ρ ) + 3 ( b 1 ρ + a 1 σ ) b 1 σ μ + 2 a 1 μ b 1 σ 2 ) k + ( 36 b 1 σ 2 μ ρ + ( 12 b 1 σ 2 ρ + 12 b 1 σ μ 2 2 ( b 1 μ 2 2 b 1 σ ρ ) σ ) μ + ( 6 b 1 σ μ ρ ( b 1 μ 2 2 b 1 σ ρ ) μ ) σ ) k 2 3 b 1 σ μ V = 0 ,

( G G 2 ) 3 : 6 ( b 1 σ ( b 1 μ 2 + 2 b 1 σ ρ ) 3 b 1 2 μ 2 σ + 2 ( b 1 ρ + a 1 σ ) b 1 σ 2 ) k + ( 24 b 1 σ 3 ρ + 36 b 1 σ 2 μ 2 + ( 12 b 1 σ 2 ρ + 12 b 1 σ μ 2 2 ( b 1 μ 2 2 b 1 σ ρ ) σ ) σ ) k 2 2 b 1 σ 2 V = 0 ,

( G G 2 ) 4 : 60 b 1 σ 3 μ k 2 + 30 b 1 2 σ 2 μ k = 0 ,

( G G 2 ) 5 : 24 b 1 σ 4 k 2 + 12 b 1 2 σ 3 k = 0. (24)

Solving the above algebraic equations with the assistance of Maple, we obtain the following results:

Result 1.

V = k 2 μ 2 4 k 2 ρ σ , a 0 = a 0 , a 1 = 2 k ρ , b 1 = 0 , (25)

Result 2.

V = k 2 μ 2 4 k 2 ρ σ , a 0 = a 0 , a 1 = 0 , b 1 = 2 k σ . (26)

Substituting (25) into the solution form (23) and using (5), we get the following solutions:

U 1,1 ( ξ ) = 2 k ρ ( μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) ) + a 0

U 1,2 ( ξ ) = 2 k ρ ( μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) ) + a 0

U 1 , 3 ( ξ ) = 2 k ρ σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) ) A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) + a 0 , σ , ρ > 0

U 1,4 ( ξ ) = 2 k ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B ) A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B + a 0

U 1,5 ( ξ ) = 2 k A A ξ + B + a 0

Now, substituting (26) into the solution form (23) and using (5), we get the following solutions:

U 2,1 ( ξ ) = 2 k σ μ 2 ρ Δ ( A cosh ( Δ ξ 2 ) + B sinh ( Δ ξ 2 ) ) 2 ρ ( B cosh ( Δ ξ 2 ) + A sinh ( Δ ξ 2 ) ) + a 0

U 2,2 ( ξ ) = 2 k σ μ 2 ρ Δ ( A cos ( Δ ξ 2 ) B sin ( Δ ξ 2 ) ) 2 ρ ( A sin ( Δ ξ 2 ) + B cos ( Δ ξ 2 ) ) + a 0

U 2 , 3 ( ξ ) = 2 k σ ( A sin ( ρ σ ξ ) + B cos ( ρ σ ξ ) ) σ ρ ( A cos ( ρ σ ξ ) + B sin ( ρ σ ξ ) ) + a 0 , σ , ρ > 0

U 2,4 ( ξ ) = 2 k σ ρ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) B ) ρ σ ( A sinh ( 2 ρ σ ξ ) + A cosh ( 2 ρ σ ξ ) + B ) + a 0

Finally, using the fact that u i , j ( x , y , t ) = U i , j ( ξ ) , where ξ = k ( x + y ( k 2 μ 2 4 k 2 ) t ) (As an example of one of the above solutions is shown in Figure 3).

Figure 3. The solution u 1,5 ( x , y ) of CD equation with A = 1 , B = 1 , k = 1 , and a 0 = 1 .

4. Conclusion and Future Work

A modified (G'/G2)-expansion method has been proposed in this paper to obtain exact traveling wave solutions to the Phi-4 equation, the Joseph-Egri (TRLW) equation, and the Calogro-Degasperis (CD) equation. All solutions obtained to these equations have been verified by substitution into the original equation. With the help of the symbolic computation software Maple, this method is easy to implement and powerful. For future work, we will try to modify the auxiliary equation in order to get different new solutions.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Hereman, W. and Malfliet, W. (2005) The Tanh Method: A Tool to Solve Nonlinear Partial Differential Equations with Symbolic Software. Proceedings 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, 10-13 July 2005, 165-168.
[2] Zahran, E.H.M. and Khater, M.M.A. (2016) Modified Extended Tanh-Function Method and Its Applications to the Bogoyavlenskii Equation. Applied Mathematical Modelling, 40, 1769-1775.
https://doi.org/10.1016/j.apm.2015.08.018
[3] Jawad, A.J.M. (2012) The Sine-Cosine Function Method for the Exact Solutions of Nonlinear Partial Differential Equations. System, 2, 3.
[4] Wazwaz, A.-M. (2004) A Sine-Cosine Method for Handling Nonlinear Wave Equations. Mathematical and Computer Modelling, 40, 499-508.
https://doi.org/10.1016/j.mcm.2003.12.010
[5] Hietarinta, J. (2005) Hirota’s Bilinear Method and Soliton Solutions. Physics AUC, 15, 31-37.
[6] Wazwaz, A.-M. (2007) Multiple-Soliton Solutions for the KP Equation by Hirota’s Bilinear Method and by the Tanh-Coth Method. Applied Mathematics and Computation, 190, 633-640.
https://doi.org/10.1016/j.amc.2007.01.056
[7] Wang, M.L., Zhou, Y.B. and Li, Z.B. (1996) Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Physics Letters A, 216, 67-75.
https://doi.org/10.1016/0375-9601(96)00283-6
[8] Abdel Rady, A.S., Osman, E.S. and Khalfallah, M. (2010) The Homogeneous Balance Method and Its Application to the Benjamin-Bona-Mahoney (BBM) Equation. Applied Mathematics and Computation, 217, 1385-1390.
https://doi.org/10.1016/j.amc.2009.05.027
[9] Yusufoglu, E. (2008) New Solitonary Solutions for the MBBM Equations Using Expfunction Method. Physics Letters A, 372, 442-446.
https://doi.org/10.1016/j.physleta.2007.07.062
[10] He, J.-H. and Wu, X.-H. (2006) Exp-Function Method for Nonlinear Wave Equations. Chaos, Solitons & Fractals, 30, 700-708.
https://doi.org/10.1016/j.chaos.2006.03.020
[11] Akinyemi, L., Senol, M. and Iyiola, O.S. (2021) Exact Solutions of the Generalized Multidimensional Mathematical Physics Models via Sub-Equation Method. Mathematics and Computers in Simulation, 182, 211-233.
https://doi.org/10.1016/j.matcom.2020.10.017
[12] Durur, H., Kurt, A. and Tasbozan, O. (2020) New Travelling Wave Solutions for KdV6 Equation Using Sub Equation Method. Applied Mathematics and Nonlinear Sciences, 5, 455-460.
https://doi.org/10.2478/amns.2020.1.00043
[13] Demiray, S., Unsal, O. and Bekir, A. (2014) New Exact Solutions for Boussinesq Type Equations by Using (G’/G, 1/G) and (1/G’)-Expansion Methods. Acta Physica Polonica A, 125, 1093-1098.
https://doi.org/10.12693/APhysPolA.125.1093
[14] Mamun Miah, M., Shahadat Ali, H.M., Ali Akbar, M. and Wazwaz, A.M. (2017) Some Applications of the (G’/G, 1/G)-Expansion Method to Find New Exact Solutions of NLEEs. The European Physical Journal Plus, 132, 1-15.
https://doi.org/10.1140/epjp/i2017-11571-0
[15] Li, L.-X., Li, E.-Q. and Wang, M.-L. (2010) The (G’/G, 1/G)-Expansion Method and Its Application to Travelling Wave Solutions of the Zakharov Equations. Applied Mathematics—A Journal of Chinese Universities, 25, 454-462.
https://doi.org/10.1007/s11766-010-2128-x
[16] Bekir, A. (2008) Application of the (G’/G)-Expansion Method for Nonlinear Evolution Equations. Physics Letters A, 372, 3400-3406.
https://doi.org/10.1016/j.physleta.2008.01.057
[17] Wang, M.L., Li, X.Z. and Zhang, J.L. (2008) The (G’/G)-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.
https://doi.org/10.1016/j.physleta.2007.07.051
[18] Bibi, S., Mohyud-Din, S.T., Ullah, R., Ahmed, N. and Khan, U. (2017) Exact Solutions for STO and (3+1)-Dimensional KdV-ZK Equations Using (G’/G2)-Expansion Method. Results in Physics, 7, 4434-4439.
https://doi.org/10.1016/j.rinp.2017.11.009
[19] Mohyud-Din, S.T. and Bibi, S. (2018) Exact Solutions for Nonlinear Fractional Differential Equations Using (G’/G2)-Expansion Method. Alexandria Engineering Journal, 57, 1003-1008.
https://doi.org/10.1016/j.aej.2017.01.035
[20] Aljahdaly, N.H. (2019) Some Applications of the Modified (G’/G2)-Expansion Method in Mathematical Physics. Results in Physics, 13, Article ID: 102272.
https://doi.org/10.1016/j.rinp.2019.102272
[21] Behera, S., Aljahdaly, N.H. and Virdi, J.P.S. (2022) On the Modified (G’/G2)-Expansion Method for Finding Some Analytical Solutions of the Traveling Waves. Journal of Ocean Engineering and Science, 7, 313-320.
https://doi.org/10.1016/j.joes.2021.08.013
[22] Zayed, E.M. and Arnous, A.H. (2014) The Modified (w/g)-Expansion Method and Its Applications for Solving the Modified Generalized Vakhnenko Equation. Italian Journal of Pure and Applied Mathematics, 32, 477-492.
[23] Akter, J. and Akbar, M.A. (2015) Exact Solutions to the Benney-Luke Equation and the Phi-4 Equations by Using Modified Simple Equation Method. Results in Physics, 5, 125-130.
https://doi.org/10.1016/j.rinp.2015.01.008
[24] Taghizadeha, N., Mirzazadeha, M. and Paghaleh, A.S. (2012) Exact Travelling Wave Solutions of Joseph-Egri(TRLW) Equation by the Extended Homogeneous Balance Method. International Journal of Applied Mathematics and Computation, 4, 96-104.
[25] Fan, F.T., Zhou, Y.Q. and Liu, Q. (2019) Bifurcation of Traveling Wave Solutions for the Joseph-Egri Equation. Reports on Mathematical Physics, 83, 175-190.
https://doi.org/10.1016/S0034-4877(19)30038-2
[26] Mohyud-Din, S.T., Nawaz, T., Azhar, E. and Akbar, M.A. (2017) Fractional Sub-Equation Method to Space-Time Fractional Calogero-Degasperis and Potential Kadomtsev-Petviashvili Equations. Journal of Taibah University for Science, 11, 258-263.
https://doi.org/10.1016/j.jtusci.2014.11.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.