Share This Article:

On the Pólya Enumeration Theorem

Abstract Full-Text HTML Download Download as PDF (Size:184KB) PP. 172-173
DOI: 10.4236/iim.2009.13025    6,844 Downloads   10,483 Views   Citations
Author(s)    Leave a comment


Simple formulas for the number of different cyclic and dihedral necklaces containing nj beads of the j-th color, and , are derived, using the Pólya enumeration theorem.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. FEL, "On the Pólya Enumeration Theorem," Intelligent Information Management, Vol. 1 No. 3, 2009, pp. 172-173. doi: 10.4236/iim.2009.13025.


[1] G. Pólya, “Kombinatorische anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen,” Acta Math., Vol. 68, pp. 145–254, 1937.
[2] F. Harary and E. M. Palmer, “Graphical enumeration,” Academic Press, New York, 1973.
[3] J. J. Rotman, “An introduction to the theory of groups,” Boston, Mass., Allyn and Bacon, Chapter 3, 1984.
[4] G. Polya and R. C. Read, “Combinatorial enumeration of groups, graphs, and chemical compounds,” Springer, New York, 1987.
[5] F. Harary, “Graph theory,” Reading, Addison-Wesley, MA, 1994.
[6] A. Kerber, “Applied finite group actions,” 2nd Ed., Springer, Berlin, Chap. 3, 1999.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.