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Abstract 
Since its discovery, myosin-binding protein C (cMyBP-C) has become a pro-
tein of interest clinically. With emergence of new methodologies and tech-
nologies, the structure and functions of cMyBP-C from different aspects can 
be studied, enabling us to better understand its involvement in certain cardiac 
conditions. Studying its kinetics of release and clearance from the circulation 
and by comparing to other conventional biomarkers, it has been reported that 
cMyBP-C is eligible to be a novel biomarker for several cardiac conditions. 
Moreover, studying the genetics and their involvement in pathogenic me-
chanisms has opened the ideas for potential therapeutic strategies. More and 
more researches are constantly being done to better understand the role of 
cMyBP-C in dilated cardiomyopathy (DCM). The importance of cMyBP-C to 
the heart is still actively being investigated. Its presence is however crucial for 
sarcomere organization and proper regulation of cardiac contraction during 
systole and complete relaxation during diastole. Genetic mutation in 
cMyBP-C has been linked to cardiac conditions including hypertrophic and 
dilated cardiomyopathies. Around 350 types of mutations have already been 
documented leading to various cardiac conditions and abnormalities. Ana-
lyzing human heart samples has enabled us to better understand the impor-
tance of cMyBP-C and how its mutations lead to inherited cardiomyopathies. 
It is therefore necessary to have an update about the research progress of 
cMyBP-C in relation to DCM and other cardiac conditions. 
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1. Introduction 

Dilated cardiomyopathy (DCM) is the most common type of cardiomyopathies 
seen clinically. Its pathogenesis is not yet fully understood. Its occurrence and 
development may be attributed to secondary causes such as viral infection, 
hypertension, autoimmune cause, alcohol intake and drugs. It has been reported 
that the 5-year survival rate of DCM is less than 50% after the emergence of 
DCM symptoms [1] [2]; in China, the prevalence rate is 19 per 100,000 [3]. Pa-
thologically, DCM changes are characterized by a triad of myocyte degradation, 
myocyte hypertrophy and myocardial fibrosis [4]. DCM can also be due to idi-
opathic causes, which is principally due to gene mutations in specific cardiac 
proteins [5] [6]. The main clinical manifestations of DCM patients are chest 
tightness, palpitation, dyspnea and decreased activity tolerance, serious symp-
toms of heart failure in more severe cases, and even appearance of serious heart 
arrhythmias. Transplantation is the only effective treatment. Current treatment 
methods are only to improve the symptoms of heart failure and to prevent com-
plications. DCM mainly manifests as a declination of systolic and diastolic func-
tions. There are a wide variety of structural cardiac proteins involved in myocar-
dial contraction and relaxation. One protein of great interest is cMyBP-C. The 
latter is an important regulotory component of the sarcomere which ensures 
proper regulation of heart systolic and diastolic function. In this review, we em-
phasize on an update about the research progress of cMyBP-C and its relation to 
DCM and other cardiac conditions. 

2. Biological Characteristics of cMyBP-C 
2.1. Classification of cMyBP 

The normal myocardial fibers are composed of regular arrangement of myofi-
brils that consist of thick myosin and thin actin filaments. The normal systolic 
and diastolic function of the myocardium depends on the proper interactions of 
the myofilaments. In addition to myofilaments, myocardium also needs some 
accessory proteins to help in stabilization of the sarcomere and in cross-bridges 
formation. The thick filaments are composed of myosin while thin filaments are 
mainly composed of actin, tropomyosin and troponin. Genetic mutation encod-
ing sarcomere proteins can lead to related myocardial diseases, such as hyper-
trophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). 

Myosin binding protein C, being cardiac specific, has lately become of much 
interest clinically. MyBP-C is encoded by the MyBPC3 gene and is different 
from the other isoforms encoded by MyBPC1 and MyBPC2 genes (See Table 1).  

 
Table 1. Different Isoforms of MyBPC genes. 

Gene Expressed in 

MyBPC1 Slow skeletal muscle 

MyBPC2 Fast skeletal muscle 

MyBPC3 Cardiac muscle 
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The myocardium type (C3), also known as human cardiac muscle myosin 
binding protein C, is specifically expressed in cardiomyocytes, whereas C1 and 
C2 types are only present in skeletal muscle and are not detectable in the myo-
cardium [7]. 

In this review we will emphasize about the research progress of cardiac myo-
sin-binding protein C which is an important regulatory protein of the sarco-
mere. 

2.2. Structure Composition of cMyBP-C 

cMyBP-C was first discovered in the 1970s [8], and it has quickly become a pro-
tein of interest clinically. Studies have been done to further understand the 
structure and functions of cMyBP-C. This has enabled us to better elucidate its 
involvement in pathogenesis of certain cardiac conditions. Its gene encodes 1274 
amino acids, so cMyBP-C is a large protein with a molecular weight of 140 - 150 
KD (≈1.4 × 104 - 1.5 × 104). The protein has 11 functional regions (C0 - C10), of 
which 8 IgC2 motifs and 3 fibronectin 3 (FNH3) motifs. The “M-domain”, also 
known as the motif, is long polypeptide linkers found between C1 and C2 do-
mains. It contains multiple phosphorylation sites, mainly four highly conserved 
serines (S273, S282, S302, and S307) [9] [10]. These serines are phosphorylated 
via β-Adrenergic-stimulation and are believed to regulate cross-bridges forma-
tion, thus important for cardiac contractility [11] [12]. cMyBP-C is significantly 
different from other isoforms of MyBP-C; 1) cMyBP-C contains an Ig assembly 
of 101 amino acids at the N-terminus (C0). This structure is unique and highly 
specific to the myocardium; 2) There are four phosphorylation sites in the 105 
amino acid-linkage region between C1 - C2; 3) There is a 28-amino acids residue 
domain in the C5 Ig domain [13], which is rich in proline.  

3. Biological Function of cMyBP-C 
3.1. Phosphorylation of cMyBP-C 

The normal structure of cMyBP-C protein is extremely important for their cor-
responding functions, especially for the correct composition of the myocardium, 
the contraction and relaxation of the heart. It is known that cMyBP-C has 17 
phosphorylation sites, 4 of which are more active (M-domain) [14], mainly dis-
tributed between C1-C2. Protein kinase A (PKA) promotes the phosphorylation 
of cMyBP-C through stimulation of Beta-adrenergic agonists [15], resulting in 
positive inotropic cardiac effects. Large level of intracellular calcium ions re-
leased from the sarcoplasmic reticulum binds to TnC of Troponin complex and 
TnI is inhibited. The C1 component of the cMyBP-C binds to induce a confor-
mational change and causes a shift in the tropomyosin complex [16]. This acti-
vates the thin filament into an open structural state and exposes the binding site 
of actin. Hydrolysis of ATP on the myosin induces cross-bridges formation be-
tween myosin head and active site on actin [17]. The strength of contraction is 
said to be dependent on the number of cross-bridges formed [12].  
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3.2. cMyBP-C Regulates Systolic Contraction and Diastolic  
Relaxation 

The systolic and diastolic function of the heart muscle depends on the correct 
interaction of the sarcomeric proteins. The contraction mechanism of the myo-
cardium is from the release of energy of the thick filament proteins through the 
cross-bridges with ATPase activity and AIPse, which in turn causes the 
cross-bridges to interact with the thin filaments to produce movement. Hof-
mann et al. at first reported the important function of cMyBP-C in the 1990s 
[18]. Phosphorylation of cMyBP-C can affect the dynamic changes of the 
cross-bridges formation, which in turn regulates the myosin-actin interaction. 
The force developed within the myocardium relies on the rate at which 
cross-bridges are recruited [19]. The phosphorylation of cMyBP-C is regulated 
by intracellular calcium ion concentrations and beta-adrenergic agonists, which 
in turn regulates the action of myosin S2 [20]. Phosphorylated cMyBP-C has a 
reduced affinity to myosin and does not bind to myosin S2. This in turns en-
hances the interaction between myosin and actin [21] and promotes the contrac-
tion of the myocardium. It is the number of cross-bridges that ultimately deter-
mines the peak pressure achieved [22]. 

The removal of calcium ions from the cytoplasm initiates the process of relax-
ation. Other processes including the rate of thin filament deactivation and rate 
of cross-bridges detachment are also involved [23]. It is generally believed that 
cMyBP-C exerts a greater influence on the diastolic function than on the con-
tractile function of the myocardium. Animal studies [19] have demonstrated 
that cMyBP-C plays an extremely important role in myocardial diastolic func-
tion. Studies showed that cMyBP-C phosphorylation is an important mediator of 
diastolic function and increases the rate of cross-bridges detachment, thus en-
suring proper relaxation [24]. Impaired phosphorylation of cMyBP-C can lead 
to diastolic dysfunction as seen in hypertrophic cardiomyopathy (HCM) [25]. 
Impaired cMyBP-C phosphorylation leads to slow deactivation of thin filament 
and slow the rate of detachment of cross-bridges from the thin filament. Conse-
quently, ventricular relaxation will be affected and prolonged. Therefore, 
cMyBP-C phosphorylation accelerates rate of cross-bridges detachment, thus 
ensuring relaxation for proper diastolic function.  

4. cMyBP-C and Cardiac Conditions 
4.1. cMyBP-C and Hypertrophic Cardiomyopathy 

Since cMyBP-C has a great influence on both the diastolic and systolic function 
of the myocardium, any abnormality of cMyBP-C or mutation of its coding gene 
will definitely have a certain influence on the function of the myocardium. The 
most frequently mutated gene in HCM is perhaps the cMyBP-C gene [26]. 
cMyBP-C has gain so much attention clinically since the discovery that 
cMyBP-C gene mutation can lead to HCM [27]. Watkins et al. [28] and Bonne et 
al. [29] respectively reported that cMyBP-C gene deletion, insertion, and mis-
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sense mutations might damage the structure and functional integrity, leading to 
hypertrophic cardiomyopathy. More and more mutation sites of cMyBP-C pa-
thogenic genes have been found, and about 350 have been reported so far [30]. 
Animal model have proven that cMyBP-C mutations lead to hypertrophic car-
diomyopathy. Yang et al. [31] constructed truncated protein models of which 
one expresses a truncated protein and the other one a myosin-binding site that 
lacks myosin and myosin binding sites. Both animal models eventually showed 
similar hypertrophic myocardium. Different domains of the cMyBP-C can un-
dergo different type of mutation and thus leading to different structural or dys-
function of the cMyBP-C protein. For example, a Japanese study showed that a 
frame-shift deletion in MyBP-C lead to left ventricular remodeling of HCM [32]. 
HCM with left ventricular dysfunction and dilation in elderly is due to a mis-
sense mutation on MyBP-C as shown by another study [33].  

4.2. cMyBP-C and Dilated Cardiomyopathy 

Genetic mutations of cMyBP-C are not only related to hypertrophic cardi-
omyopathy. Recent studies have found that cMyBP-C genetic defects can also 
lead to dilated cardiomyopathy (DCM) [33], such as the Asn948Thr missense 
mutation [34]. A multinational study of 639 patients with dilated cardiomyo-
pathy showed that the cMyBP-C gene mutation is the second highest mutated 
gene [35]. cMyBP-C may also be involved in the pathogenesis of DCM though 
eliciting an autoimmune response [36]. Post myocardial infarction causes pro-
teolysis of C0C1 fragment of cMyBP-C and result in production of au-
to-antibodies which is believed to induce the onset of autoimmune myocarditis 
and hence ultimately progress to DCM and heart failure [37]. Studies have 
shown the presence of auto-antibodies to onset of autoimmune myocarditis and 
DCM [38].  

5. cMyBP-C as Cardiac Biomarkers 
5.1. cMyBP-C as Biomarker for Myocardial Infarction 

Cardiac Troponin (cTn) has long been the preferred serum biomarker for the 
diagnosis of acute myocardial infarction (AMI) [39], but it is also sensitive to 
other diseases such as myocarditis, severe pulmonary infection, and pulmonary 
embolism [40]. Myocardial injury requires quick attention and better biomark-
ers which are more specific than cTn are still needed. cMyBP-is among the most 
voluminous cardiac protein quantified, twice as much as cTnI and cTnT [41].  

cTn gradually increases after 4 to 6 hours post-MI, and is unable to be de-
tected upon early onset of myocardial injury. Studies have been done to under-
stand the kinetics of release and clearance of cMyBP-C as compared to cTnT. It 
turns out that cMyBP-C, as a biomarker, rises and clears more rapidly as com-
pared to cTnT [42] [43]. Govindan et al. [44] pointed out that cMyBP-C can be a 
new marker of myocardial necrosis. Its serum concentration is several times 
higher than cTn and it is easy to be detected. Kuster et al. [45] experiments 
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showed that serum cMyBP-C concentration began to increase significantly after 
30 minutes post-MI after ligation of porcine coronary arteries. Another clinical 
study [46] confirmed the observation that serum cMyBP-C in patients with 
acute myocardial infarction was significantly higher than the traditional markers 
of myocardial necrosis, and began to increase within 4 hours of onset; and was 
significantly reduced in serum after 12 hours of emergency stenting surgery. 
This indicates that serum cMyBP-C can be used as a biochemical marker for the 
early diagnosis of AMI. 

5.2. cMyBP-C as Biomarker for DCM and Heart Failure 

Dilated Cardiomyopathy is a common cause of heart failure, affecting the heart 
musculature and vasculature and involves one or several underlying pathophysi-
ological mechanisms [47]. Myocyte injury can lead to DCM and causes release of 
related biomarkers including that of cMyBP-C. At cutoff value of 45 ng/ml, se-
rum cMyBP-C turns out to have 100% sensitivity and 96% specificity as diagnos-
tic biomarker for heart failure [48]. The exact release mechanism of cMyBP-C in 
heart failure is still unknown. Moreover, cMyBP-C has a 90% sensitivity and 
93% specificity as a biomarker of prognosis in heart failure patient at cutoff val-
ue of 152 ng/ml [48]. The same study showed that failure to decrease the level of 
serum cMyBP-C leads to poor prognosis. Therefore, MyBP-C has both the cha-
racteristics of being diagnostic and prognostic biomarker. 

6. Conclusion 

With the emergence of new research methodologies and technologies, great 
progress has been made towards understanding the structure and function of 
sarcomeric proteins. The structure and physiological functions of cMyBP-C are 
now relatively clearer. cMyBP-C has become a protein of interest due to its po-
tential use clinically. Understanding the structure and functions of cMyBP-C 
enables us to better relate its involvement in pathogenesis of certain cardiac 
conditions including that of cardiomyopathies and heart failure. Studying its re-
lease, kinetics and clearance from the circulation has demonstrated than it can 
be used as a novel biomarker for AMI. Its presence is however crucial for sarco-
mere organization and proper regulation of cardiac contraction during systole 
and complete relaxation during diastole. Genetic mutation in cMyBP-C has been 
linked to several cardiac conditions. Around 350 types of mutations have already 
been documented. Moreover, prompt understanding of cMyBP-C in term of 
structure, genetics and functions, is important and can be insightful in terms of 
therapeutic strategies towards HCM, DCM, heart failure, AMI and other related 
cardiac conditions.  
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