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Abstract 
Viticulturists traditionally have a keen interest in studying the relationship be-
tween the biochemistry of grapevines’ leaves/petioles and their associated spec-
tral reflectance in order to understand the fruit ripening rate, water status, nu-
trient levels, and disease risk. In this paper, we implement imaging spectroscopy 
(hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength re-
gion (986 total spectral bands), to assess vineyard nutrient status; this constitutes 
a high dimensional dataset with a covariance matrix that is ill-conditioned. The 
identification of the variables (wavelength bands) that contribute useful informa-
tion for nutrient assessment and prediction, plays a pivotal role in multivariate 
statistical modeling. In recent years, researchers have successfully developed many 
continuous, nearly unbiased, sparse and accurate variable selection methods to 
overcome this problem. This paper compares four regularized and one functional 
regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Con-
cave Penalty, iterative Sure Independence Screening, and Functional Data Analy-
sis for wavelength variable selection. Thereafter, the predictive performance of 
these regularized sparse models is enhanced using the stepwise regression. This 
comparative study of regression methods using a high-dimensional and highly 
correlated grapevine hyperspectral dataset revealed that the performance of Elas-
tic Net for variable selection yields the best predictive ability. 
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1. Introduction 

Variable selection in multivariate analysis is a critical step in regression, especially 
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for high-dimensional datasets. It remains a challenge to identify a small fraction of 
essential predictors from thousands of variables, especially for small sample sizes. 
Variable selection by way of a sparse approximation of the parsimonious model 
can enhance the prediction and estimation accuracy by efficiently identifying the 
subset of essential predictors, reduce model complexity and improve model inter-
pretability. This paper presents some unbiased, sparse and continuous methods for 
the judicious selection of important predictors, which allow easier interpretation, 
better prediction, and reduction in the complexity of the model.  

This paper utilized a hyperspectral data, collected from vines at the leaf-level 
and the canopy-level, for a Riesling vineyard. The dataset was obtained by mea-
suring the spectral reflectance, defined as the ratio of backscattered radiance 
from a surface and the incident radiance on that surface (scaled to 0% - 100%) 
[1], directly over the leaves during the bloom period of growth. These in situ 
spectral measurements were coupled to the contemporaneous nutrient analysis 
of the petiole (leaf stem) [2], as per Wine Grape Production Guide for Eastern 
North America [3]. The goal of that project was to develop vineyard nutrient 
models (nitrogen, potassium, phosphorous, magnesium, zinc, and boron), with 
wavelengths in the reflective regime (approximately 350 - 2500 nm) as predictor 
variables, toward rapid assessment vine nutrient status using remote sensors, 
such as cameras mounted on Unmanned Aerial Systems (UAS). Examples of 
similar past studies can be found in Soil Research [4]. Such an approach would 
enable growers to rapidly assess vineyard nutrient needs and apply remedial 
management interventions, e.g., tailored fertilization regimes. However, the ap-
proach is only useful if such models are accurate and precise, i.e., consistency 
and associated model robustness are critical. This specific grapevine dataset has 
n = 144 observations and p = 986 spectral bands, treated here as predictor va-
riables; to reiterate, the objective was to identify those wavelengths or wave-
length regions that are unbiased and precise predictors of a specific nutrient’s 
level in the plant. To achieve compatibility with 144 observations of predictors, 
six replicates of each of the response variable of 24 leaf-level spectral samples 
have been used.  

This high dimensional dataset, with more number of variables than the sample 
size, suffers from the curse of dimensionality, ill-posedness [5] and multicollinearity 
as shown in Figure 1. Hence, a thorough analysis of such data requires modern re-
gularization techniques involving simultaneous shrinkage and variable selection.  

One popular family of feature selection methods for parametric models is 
based on the penalized (pseudo-) likelihood approach. These regularization 
paths for Generalized Linear Models via Coordinate Descent include the Lasso 
[6], the Smoothly Clipped Absolute Deviation [7], the Elastic Net [8], the 
Minimax Concave Penalty [9], Multi-Step Adaptive Elastic Net [10], and related 
techniques. Fan & Lv [11] introduced Sure Independence Screening, where the 
sure screening is achieved by correlation learning. Since the spectral reflectance 
data have been measured along the continuum of wavelengths from 330 - 2510 
nm, at a spectral sampling interval from 1.5 - 2.7 nm, it can be represented by a  
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Figure 1. Spectral reflectance curves are plotted as a function of wavelength. There is a total of 144 curves, each measured at 986 
wavelengths for Riesling variety grapevines during the bloom growth period. These curves represent typical vegetation curves, 
with absorption features in the blue (450 nm) and red (650 nm) regions due to photosynthesis and high reflectance in the 
near-infrared (800 - 1400 nm region), due to internal cellular leaf structure. The noisy regions at approximately 1900 nm and 2300 
nm (and onward) are due to atmospheric absorption features and are typically omitted from analyses [1].  
 

smooth curve belonging to an infinite dimensional space. Since predictors are 
non-periodic functional data [12], we can use spline functions for approxima-
tion, which combines faster calculation of polynomials with significantly more 
flexibility. A fewer number of basis functions are required to achieve B-spline 
approximation.  

Let us consider the traditional multiple linear regression model 

,= +y Xβ ε                          (1) 

where [ ]1, , n p
n

×= ∈X x x   is an input matrix, ( )T
1, , n

ny y= ∈y    is the 
corresponding response vector, p∈β  is the regression coefficients vector, 
and n∈ε  is a vector of the residual errors with variance ( ε ) = 2

εσ . In order 
to remove the constant term from the regression model, let us standardize the  

predictor variables, such that 1 0n
iji X

=
=∑ , 2

1

1 1
 

n
iji X

n =
=∑  for 1, ,j p=   [8].  

Since the grapevine dataset has more predictor variables than the sample size 
(which causes multicollinearity), we will discuss the various modern regulariza-
tion techniques, involving simultaneous shrinkage and variable selection, in 
subsequent sections.  

To explore the various variable selection techniques, this paper is organized as 
follows: In Section 2, we explain the Elastic Net regularization approach with an 
emphasis on its clever combination of the traditional Ridge and Lasso methods; 
in Section 3 we introduce the Multi-Step Adaptive Elastic Net, which provides 
(at least in principle) an improvement over the basic elastic Net, via various 
modifications of the penalty function; Section 4 deals with the method known as 
Minimax Concave Penalty, which is yet another technique designed to address 
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the estimation, inference and prediction inherent in complex datasets, like the 
grapevine data studied in this paper; in Section 5 we discuss various aspects of 
iterative Sure Independence Screening; Section 6 adopts a conceptually different 
approach, by using a functional approach to variable selection, including 
smoothing by basis representation and validation; Section 7 is dedicated to the 
comparative analysis of the performance of all of the above techniques with the 
goal of wavelength selection for the Riesling grapevine dataset toward nutrient 
estimation; and finally, in Section 8, we discuss the advantages and limitations of 
the various models mentioned above before concluding. 

2. Elastic Net 

Ridge regression, the oldest and earliest form of regularization, shrinks all coef-
ficients of the predictors towards zero by a uniform (ℓ2 – norm) convex penalty 
to produce a unique solution. However, Ridge regression typically does not set 
the coefficients exactly to zero, unless λ = ∞ [6]. Indeed, for the scientific prob-
lem underlying the grapevine data, it is important to achieve both shrinkage and 
variable selection. Hence, Ridge regression is not suitable for the high dimen-
sional grapevine dataset. The Ridge regression coefficients are defined as 

( ) { }2 2Ridge
2 2

ˆ arg min pβ
β λ

∈
= − +y X



β β
            

 (2) 

where ( )22 T
12   n

i ii y β
=

− = −∑y xXβ  is a quadratic loss function (residual sum 
of squares), T

ix  is the ith row of X, 2 2
12    p

jj β
=

=∑β  is the ℓ2–norm penalty on 
β , and 0λ ≥  is the tuning (penalty) parameter, which regulates the strength 
of the penalty.  

Lasso, on the other hand, shrinks all coefficients by a constant value (ℓ1 - 
norm) and typically sets some of them to zero for some appropriately chosen λ. 
It simultaneously achieves continuous shrinkage and automatic variable selec-
tion. However, when the multicollinearity is very high, Lasso tends to pick one 
of the predictors from the cluster in an arbitrary way and then shrink the others 
to zero [8]. The grapevine data are highly correlated; the arbitrariness of variable 
selection, therefore, will yield multiple solutions. Hence, analysis of the grape-
vine dataset using Lasso may not always yield a unique solution, as needed. The 
Lasso regression coefficients are defined as  

( ) { }2Lasso
2 1

ˆ  arg min pβ
β λ

∈
= − +Xy



β β               (3) 

where ( )22 T
12

1 
2

n
i ii y

n
β

=
− = −∑y X xβ  is the quadratic loss function, T

ix  is 

the ith row of the matrix X, 
11   p

jj β
=

=∑β  is the ℓ1–norm penalty on β ,  

which induces sparsity in the solution, and 0λ ≥  is the tuning parameter. 
Naïve Elastic Net (NEN) overcomes these limitations by combining of the 

Lasso (ℓ1-norm) and Ridge (ℓ2-norm) penalties [8].  
Let us consider two fixed non-negative tuning parameters: λ1 and λ2, such that 

the naïve elastic net criterion is  
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( ) 2 2
1 2 1 22 1 2, ,L λ λ λ λ= − + +Xyβ β β β              (4) 

where ( )22 T
12

1
2

n
i ii y

n
β

=
− = −∑y X xβ , 

11
p

jj β
=

=∑β  and 2 2
12

p
jj β

=
=∑β   

The NEN estimator ( )N-Enetβ̂  is the minimizer of equation [8]: 
( ) ( ){ }N-Enet

1 2
ˆ arg min , ,

p
L

β
β λ λ

∈
=



β                   (5) 

Let us consider ( )2 1 2α λ λ λ= + , then the elastic net estimator ( )N-enetβ̂  is  
( ) ( ){ }2N-Enet

2
ˆ arg min

p
Pα

β
β λ

∈
= − +y X



β β
             

 (6) 

subject to ( ) ( ) 2

2 11P tα α α= − + ≤β β β  for some t.  
where ( )Pα β  is the naïve elastic net penalty and ( )0,1α ∈ . For all ( )0,1α ∈ , 
the penalty function is non-differentiable at 0 (like Lasso) but strictly convex 
(like ridge). Hence, by varying α, we can control the proportion of ℓ1-norm (α = 
0) and the ℓ2-norm (α = 1) penalty. The amount of shrinkage to coefficient 
estimates is controlled by the parameter t ≥ 0.  

Initially, the NEN computes the ridge regression coefficients for each fixed 
tuning parameter λ2 and then uses this coefficient value to acquire shrinkage 
along the Lasso coefficient paths. This technique of shrinkage increases the bias of 
the coefficients without substantial reduction in the variance, resulting in an 
overall increase of the prediction error. This leads to a doubled shrinkage and 
unnecessary extra bias, in comparison to Ridge regression or Lasso [8]. Elastic Net  

can correct this double shrinkage by multiplying the NEN estimate by 21
n
λ + 

 
:  

( ) { }2 2Enet 2
1 22 1 2

ˆ 1 arg min
pn β

λ
β λ λ

∈

 = + − + + 
 

y X


β β β         (7) 

This type of transformation reverts to ridge shrinkage while retaining the va-
riable selection property of the NEN. Thus, the elastic net is able to improve the 
prediction accuracy by achieving the automatic variable selection using ℓ1 pe-
nalty, while group selection and stabilization of the coefficient paths on random 
sampling are achieved by ℓ2 penalty. The sparsity of the elastic net increases 
monotonically from zero to the sparsity of the Lasso solution as α increases from 
0 to 1, for a given parameter λ. Hence, the Elastic Net is a better solution for a 
dataset with a sample size significantly smaller than the number of highly corre-
lated predictors [13].  

At times, it is advisable to include the entire group of correlated predictors in 
the model selection, rather than single variable from the group. In such cases, 
elastic net ensures that the highly correlated variables enter or exit the model 
together. The presence of the ℓ2-norm ensures a unique minimum by making the 
loss function strictly convex [8].  

3. Multi-Step Adaptive Elastic Net 

Lasso and elastic-net approaches result in a substantial number of non-zero 
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coefficients with asymptotically non-ignorable bias. The estimation bias of the 
Lasso can be reduced by choosing the weights such that the variables with larger 
coefficients have smaller weights than variables with smaller coefficients. To mi-
tigate this bias, the adaptive Lasso uses the weighted penalty approach as given 
below: 

( ) { }2AdaLasso
12

ˆ ˆarg min
p

p
j jj w

β
β λ β

=
∈

= − + ∑Xy


β
           

 (8) 

where ˆ jw  is a weighting parameter calculated from the data, ˆˆ ini
j jw

γ
β

− =  
 

,  

and γ is a positive constant. ˆ ini
jβ  are the initial parameters, obtained by ridge 

regression or least squares. 
This approach ensures that the adaptive lasso is able to accomplish more 

shrinkage, resulting in smaller coefficients. In other words, it executes a varying 
amount of shrinkage for different variables. Adaptive elastic net is a mixture of 
the adaptive Lasso and the elastic net. Before calculating the adaptive weights, we 
estimate the elastic-net ( )Enetβ̂ , and use a positive constant γ. Using this infor-
mation, we can calculate adaptive weights:  

( )enetˆˆ , 1, 2, ,j jw j p
γ

β
− = = 

 


                 
 (9) 

Now we can estimate the adaptive elastic net by the equation below: 

( ) { }2 2AdaEnet 2
1 212 2

ˆ ˆ1 arg min
p

p
j jj w

n β

λ
β λ β λ

=
∈

 = + − + + 
 

∑Xy


β β    (10) 

The presence of the ℓ2-norm ensures that the adaptive elastic net is able to 
overcome the collinearity problem while retaining the consistency in variable 
selection and asymptotic Gaussian properties of the adaptive Lasso. The use of 
multi-step estimation achieves higher true positives (true zeroes are estimated as 
zeroes) for the variable selection by pursuing more iterative steps and using sep-
arate tuning parameters for each step. The estimates of multi-step adaptive elas-
tic net (MSA-Enet) approach are given by: 

( ) ( ) ( ) ( ){ }2 2MSAEnet 12
1 212 2

ˆ ˆ1 arg min ?
p

pk k k
j jj w

n β

λ
β λ β λ−

=
∈

 = + − + + 
 

∑y X


β β
 

 (11) 

where k = number of iterations (stages). For MSA-Enet, we use k ≥ 3. By 
considering k = 2, we can estimate the adaptive elastic net, and for k = 1, we ob-
tain the normal elastic-net. We can obtain the values of ( )

1
kλ  and ( )

2
kλ  by us-

ing cross-validation. 

4. Minimax Concave Penalty 

Convex penalties fail to satisfy all three conditions of sparsity, continuity, and 
unbiasedness. Hence, they cannot produce true parsimonious models. To over-
come these limitations, Fan & Li [7], [14] and Zhang [9] introduced new statis-
tical modeling techniques for variable selection based on nonconvex penalties, 
called Smoothly Clipped Absolute Deviation (SCAD) and Minimax Concave 
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Penalty (MCP), respectively. However, using non-convex penalties for sparsity 
will yield multiple local minima of the penalized residual sum of squares, with-
out any knowledge about the best estimator. Hence, the authors of SCAD and 
MCP regression models have emphasized the oracle property of these 
nonconvex penalties. The Oracle property means selection of the correct subset 
of predictors and estimation of the non-zero parameters as if the information 
were known ahead of time, based on some previous investigations and expe-
riences. These nonconvex penalties are initiated at the origin as the ℓ1 penalty 
(Lasso) until, |x| = λ, and then smoothly relax the penalization rate to zero as the 
absolute value of the coefficient increases, but differs in the way that the 
transition takes place. The MCP relaxes the penalization rate immediately, 
whereas, for the SCAD, the penalization rate remains flat for a while, before de-
creasing.  

Zhang [9] defined MCP on [0, ∞) by 

( ) | |

0
; 1 d

t xt xρ λ λ
γλ +

 
= − 

 
∫ , 

( )

2

2

, if ,
2;

, if ,
2

tt t
t

t

λ λγ
γρ λ

λ γ
λγ


− ≤= 

 >

 

( )
, if ,

;
0, if ,

t t
t

t

λ λγ
ρ λ γ

λγ

 − ≤′ = 
 >                  

 (12) 

for γ > 0 and λ > 0. Equation (12) clearly shows that MCP initially applies the ℓ1 
penalty (Lasso), but continuously relaxes that penalization rate until, when t > 
λγ. At this stage, the rate of penalization drops to 0.  

MCP minimizes the maximum concavity 

( ) ( ) ( ) ( ){ } ( )
1 20 1 2 2 1; sup ; ;t t t t t tκ ρ κ ρ λ ρ λ ρ λ< <≡ ≡ − −         (13) 

subject to the following unbiasedness and features selection: 

( ) ( ); 0, , 0 ;t tρ λ γλ ρ λ λ= ∀ ≥ + =                  (14) 

The MCP achieves ( ); 1κ ρ λ γ= . A higher value of regularization parameter 
𝛾𝛾 ensures reduction in unbiasedness and increase in concavity. According to 
[14], the penalized regression problem using the MCP function is given as:  

( ) ( )2MCP
2

1ˆ arg min ;
2p

Pγ
β

β λ
∈

 = − + 
 

y X


β β             (15) 

where ( ) ( )1; ;p
jjP pγ γλ β λ

=
= ∑β . Estimation of the coefficients using MCP de-

pends on the selection of the parameters γ and λ, obtained through cross-validation. 
For each penalty value of λ > 0, MCP offers a continuum of penalties starting 
with the ℓ1-norm at γ → ∞ and the ℓ0-norm as γ → 0+ [9]. Selection of γ deter-
mines the sparsity of the model. 
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The convexity of penalties guarantees that the coordinate descent converges to 
a unique global minimum and β̂  is continuous with respect to λ. Convexity 
ensures good starting values, which in turn, reduces the number of iterations. 
However, when convexity fails to exist, then β̂  may not necessarily be conti-
nuous. In other words, a slight variation in the data may significantly change the 
coefficient estimate. The estimates obtained using non-convex penalty generally 
have a large variance. Although the unbiasedness and variable selection preclude 
convex penalties, the MCP provides the sparse convexity to the broadest extent 
by minimizing the maximum concavity.  

 For the high-dimensional grapevine dataset, global convexity is neither 
possible nor relevant. However, the objective function of the grapevine dataset is 
convex in the local region. The parsimonious solutions of this objective function 
have smooth coefficient paths with stable coefficients. The tuning parameter 
gamma ( 3γ = ) for the MCP controls how fast the penalization rate goes to zero. 

5. Sure Independence Screening (SIS) 

The coordinate descent algorithm (penalized likelihood) methods fail to 
conform to the concurrent expectations of computational expediency, statistical 
accuracy, and algorithmic stability in the extremely high dimensional dataset. In 
order to overcome this constraint, Fan & Lv [11] proposed the concept of the 
sure screening method, based on a component-wise regression that tackles the 
challenges above. Variable selection through coefficient estimates generally 
overfits the model; hence, authors utilized the marginal correlations, instead of 
regression estimates, in order to address the problem of the dimensionality re-
duction of ultra high dimensional datasets. Since screening does not require in-
version of a matrix, this method seems computationally attractive. This 
correlation screening, called Sure Independence Screening (SIS), relies on the 
intuition that the predictors are independent and normally distributed. In other 
words, each variable is independently used as a predictor to decide its usefulness 
in predicting the response variable.  

According to Saldana & Feng [15], SIS is a two-stage procedure. It first re-
moves the variables with weak marginal correlation with the response, thus 
achieving dimensionality reduction p below the sample size n. Then it accom-
plishes variable selection and parameter estimation simultaneously through a 
lower dimensional penalized least squares approach, like SCAD or Lasso. Under 
certain regularity conditions, the independent, sure screening process keeps all 
of the relevant predictors in the model with a probability approaching one.  

Let X be a matrix with dimension n × p and ( )T
1, , pω ω= ω  be a p-vector 

of marginal correlations of predictors with the response variable, acquired by 
component-wise regression, such that 

T= X yω                           (16) 

We standardize the matrix X column-wise and rescale vector ω  by the 
standard deviation of the response. 
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Let us sort p component-wise magnitudes of the vector ω  in a decreasing 
order and define a sub-model γ  for any ( )0,1γ ∈ ,  

[ ]{ }is among the first biggest of l: , a1 li ni pγ γω= ≤ ≤      (17) 

where [ ]nγ  signifies the integer part of nγ . In this way, we can reduce the 
dimension of the full model { }1, , p  to a sub-model γ  with size 

[ ]d n nγ= < . Hu & Lin [16] suggested screening of variables by ranking the im-
portance of each predictor according to its marginal Pearson correlation with 
the response variable. SIS uses this marginal information of correlation to 
achieve variable selection by removing the predictors, which have weak correla-
tion with the response variable [11]. Component-wise regression is a simple 
method of dimensionality reduction below the sample size; however, the method 
may be affected by multicollinearity. Due to multicollinearity, the sample mar-
ginal screening can remove concealed essential predictors, which have a 
significant influence on a response variable but are weakly marginal correlated 
with it. In other words, some highly correlated unimportant predictors are se-
lected instead of significant variables, which are relatively feebly linked to the 
response variable. At times, SIS may not pick up significant predictors, which 
are marginally uncorrelated but jointly correlated with the response variable. 
Iterative sure independence screening not only overcomes these limitations by 
using SCAD but also improves variable selection and parameter estimation via 
penalized likelihood estimation. It makes use of the shared predictors’ in-
formation while retaining computational expediency and stability. Since the 
predictors of the grapevine dataset are not independent, even Iterative SIS, se-
lects a fewer number of predictors than desired.  

6. Functional Data Analysis 

Data collection technology has been recently developed to measure observations 
densely sampled over wavelength, space, time, and other continua [17]. In such 
cases, the random variables can assume values in an infinite dimensional space, 
even though only finite numbers of observations are available and it is 
represented by a set of curves [18]. Functional data, in turn, are defined as dis-
crete observations of a phenomenon represented by smooth curves. It reflects 
the dependence structure between neighboring points so that the phenomenon 
can be evaluated at any point in time. These observed curves and the statistical 
methods for its analysis are termed functional data and functional data analysis, 
respectively [12]. 

6.1. Functional Regression Model 

When we consider a linear regression, with the response variable y and the pre-
dictor xij being a scalar, then the model takes the form: 

0 , 1, 2, ,p
i j ij ij i ny xβ ε

=
= + =∑ 

               
 (18) 

This linear model fails to capture the smoothness of the X predictor variables 
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with respect to the wavelength. However, if we replace at least one vector of pre-
dictor variable observations ( )1, ,i i ipx x=x   in the linear equation by a func-
tional predictor xi(t), we obtain a model consisting of an intercept term along 
with a single functional predictor variable [17]. 

Let 1, , qt t  be a set of times, then we can discretize each of the n functional 
predictors xi(t) on this set. Now fit the model:  

( )0 0
q

i i j j ijy x tα β ε
=

= + +∑                   (19) 

If the refinement of the selected time is continued, then the summation will 
approach an integral equation, and we will get a functional linear regression 
model for the scalar response: 

( ) ( ) ( )0
2, 1, , ~ ,d ;i i i ii ny x t yt t Nα µ σβ ε+ == + ∫ 

       
 (20) 

where the functional regression tries to establish a relationship between a scalar 
outcome yi and random functions xi(t) [17].  

Here the constant 0α  is the intercept term that adjusts for the origin of the 
response variable. The parameter β is in the infinitely dimensional space of ℓ2 
functions (the Hilbert space of all square integral functions over a particular in-
terval) [19].  

6.2. Smoothing by Basis Representation 

When a function belongs to ℓ2 space, it can be represented by a basis of known 
functions { }k k

φ
∈

 [19]. B-spline is one such basis representation used to calcu-
late the functional regression between a functional predictor (spectral reflec-
tance) X(t) and the scalar response. It uses a fixed truncated basis expansion 
with K known basis elements:  

( ) ( ) ( ) ( )T
1

K
k k k kk kx t c t c t tφ φ

∈ =
= ≈ =∑ ∑ c



Φ             (21) 

The smoothing (or hat) matrix H is symmetric and square.  

( ) 1T T ,
−

=H Φ Φ Φ Φ                       (22) 

The degrees of freedom (DF) for functional fit is given by  

( )DF trace ,K= =H                    (23) 

moreover, the associated degrees of freedom for error is n – DF. 
In spline smoothing, the mean squared error (MSE) is a method of assessing 

the quality of the estimate. We can reduce the MSE by foregoing some bias, 
which will lower sampling variance thereby smoothing the estimated curve. 
Since the estimates are expected to vary slightly from one wavelength to another, 
the process is akin to appropriating information from neighboring data. This 
expresses our confidence in the consistency of the function x. The sharing of in-
formation increases the bias but improves the stability of the estimated curve 
[20]. The number of basis functions to calculate the predictive ability of func-
tional data analysis can be selected based on the minimum mean MSE.  
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The functional approach of smoothing data performs well only when the 
number K of basis functions is significantly small as compared to the number of 
observations. Higher values of K will tend to overfit or undersmooth the data 
[21].  

7. Comparative Study for Wavelength Selection 

A proper choice of selection methods, applied under appropriate conditions, 
helps to build consistent parsimonious models and estimate coefficients simul-
taneously for better prediction accuracy.  

Here, we compare four regularized and one functional regression methods: 
elastic net, multi-step adaptive elastic net, minimax concave penalty, sure inde-
pendence screening, and functional data analysis based on their predictive per-
formance. To select the significant variables using regularized path elastic-net, 
multi-step adaptive elastic net, minimax concave penalty, and sure independence 
screening, R packages glmnet, msaenet, ncvreg, and SIS, respectively, have been 
used. Thereafter the predictive performance has been enhanced using stepwise re-
gression. Functional regression is performed using R package “fda.usc”. 

Figure 2 and Figure 3 demonstrate that the best values for the adjusted and 
predicted R-squared metrics, for all the six nutrients of the highly correlated 
grapevine data, are achieved using the generalized linear model with elastic net 
penalty (penalized maximum likelihood). Multi-step adaptive elastic net, which 
applies data-driven weights to the ℓ1 penalty of the elastic net, reduces the values 
of adjusted and predicted R-squared, thereby contradicting Xiao & Xu [10]. The 
other three methods have mixed results for the various nutrients of the  

 

 
Figure 2. The adjusted R-squared value of the six nutrients measured using Elastic Net, 
Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence 
Screening, and Functional Data Analysis.  
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Figure 3. The predicted R-squared value of the six nutrients measured using Elastic Net, 
Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence 
Screening, and Functional Data Analysis.  

 
grapevine data. Selection of lambda is obtained using 10-fold cross-validation, 
based on the mean squared error criterion.   

8. Discussion 

Since these grapevine datasets are high dimensional with multicollinearity, sta-
tistical inference is possible only by dimensionality reduction through sparse re-
presentation. A parsimonious model of significant predictors is selected by re-
ducing the coefficients of unimportant predictors to zero, which improves the 
estimation accuracy and enhances the model interpretability. The first four 
models deal with linear regression, while the fifth one uses functional approach. 

Elastic Net averages the highly correlated wavelengths, before incorporating 
the averaged wavelength into the model. The predictive ability of elastic net for 
this high dimensional grapevine dataset with high multicollinearity is the best 
among all the methods discussed above [17].  

It is worth mentioning that the elastic net is also practically desirable because 
it provides interpretable output in the form of the solution path plot, which 
helps to visualize the variable selection. Figure 4, below shows an example of the 
Riesling variety when the response value is Nitrogen. 

As an example, analysis of the grapevine dataset reveals that the following 
wavelengths are important for predicting the Nitrogen nutrient level: 334.3, 
347.8, 571.3, 684.6, 756.9, 1434.4, 1826.4, 1858.4, 1872.6, 1893.8, 1903.8, 1906.6, 
1912.2, 1928.9, 1934.5, 1942.8, 1956.6, 1962.1, 1994.8, 2355.2, 2371, 2386.7, 
2393.3, 2419.7, 2426.2, 2430.5, 2439.1, 2483.6 nm. These values are in accordance 
to physiological expectations, although future studies could explore specific 
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Figure 4. Model Coefficient Path using Elastic Net for Nitrogen. This demonstrates how 
the coefficients of the nutrients enter the model (become non-zero) as lambda changes. 
Most of the variables have coefficients close to zero, which indicates high collinearity.  

 
absorption features in detail. For instance, Elvidge & Chen [22] used reflectance 
spectra from a pinyon pine canopy and identified 674 nm as the most pro-
nounced chlorophyll absorption feature, which is close to 684.6 nm in the list 
above. Chlorophyll generally is known to have a close relationship to Nitrogen 
content [23]. It furthermore follows that, given Nitrogen’s close relationship to 
chlorophyll content, Nitrogen predictive models would require a number of wa-
velengths from the near-infrared region [24]. We thus concluded that our wave-
length selection for Nitrogen, as an example, is valid from a vegetation physio-
logical perspective.  

Application of a data-driven weighted approach to the ℓ1-penalty for varying 
amounts of shrinkage at different variables reduces the bias and variance 
inflation factor. However, in the bargain, the coefficient of a large number of 
significant variables is reduced to zero, resulting in the poor predictive ability for 
the multi-step adaptive elastic net. 

Convergence and estimation of the coefficient using MCP depend upon the 
tuning parameters gamma (γ) and lambda (λ). Hence, the choice of tuning pa-
rameter fails to capture all of the significant predictors of the highly correlated 
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grapevine dataset, resulting in poor predictive ability. 
Sure Independence Screening, based on component-wise regression or equi-

valently correlation learning, is computationally attractive because this approach 
does not require matrix inversion. However, SIS is known to select unimportant 
predictors, which are highly correlated with the important predictors, instead of 
significant predictors, which are weakly related to the response. Hence, the pre-
dictive performance of SIS is adversely affected in the presence of multicolli-
nearity.  

The functional approach of smoothing data performs well only when the 
number K of basis functions is significantly small as compared to the number of 
observations. The presence of multicollinearity fails to reduce the number of ba-
sis functions significantly, based on minimum MSE, which negatively affects the 
predictive ability of grapevine dataset based on functional data analysis. 

9. Conclusion 

There has been a continuous endeavor to enhance the predictive ability of the 
high dimensional data by refining the coefficient estimates. These modern varia-
ble selection techniques generate a sparse model, based on the assumption that 
the predictor variables are independent. These models yield extremely good pre-
dictive accuracy when the assumption of independence is satisfied. However, for 
a dataset like these hyperspectral reflectance grapevine data, which is highly cor-
related with a large number of predictors (wavelengths), clustered together, only 
Elastic Net has the ability to select the groups of correlated variables. This out-
come is especially critical to the burgeoning field of precision agriculture, which 
is making increasing use of such hyperspectral imaging datasets but cannot 
reach a large sample size through traditional field work (time and monetary 
constraints). These data are also highly correlated (~97%). In all such cases, the 
predictive ability of Elastic Net is likely to outperform the other modern variable 
selection techniques.  

Acknowledgements 

We are grateful to Dr. Justine Vanden Heuvel (Cornell University) for her ex-
pertise in vineyard physiology, as well as the field teams from Rochester Institute 
of Technology and Cornell University for their help in collecting field data. 

References 
[1] Schott, J.R. (2007) Remote Sensing: The Image Chain Approach. Oxford University 

Press, Oxford, New York. 

[2] Anderson, G., van Aardt, J., Bajorski, P. and Heuvel, J.V. (2016) Detection of Wine 
Grape Nutrient Levels Using Visible and Near Infrared 1nm Spectral Resolution 
Remote Sensing. Paper Presented at the SPIE Commercial+ Scientific Sensing and 
Imaging. 

[3] Wolf, T.K. (2008) Wine Grape Production Guide for Eastern North America. Plant 
and Life Sciences Publishing, Ithaca, New York, 141-142. 

 

DOI: 10.4236/ojs.2017.74049 715 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2017.74049


U. K. Jha et al. 
 

[4] Shao, Y. and He, Y. (2011) Nitrogen, Phosphorus, and Potassium Prediction in 
Soils, Using Infrared Spectroscopy. Soil Research, 49, 166-172. 
https://doi.org/10.1071/SR10098  

[5] Wu, P.-S. and Müller, H.-G. (2010) Functional Embedding for the Classification of 
Gene Expression Profiles. Bioinformatics, 26, 509-517. 
https://doi.org/10.1093/bioinformatics/btp711  

[6] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of 
the Royal Statistical Society. Series B (Methodological), 267-288.  

[7] Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood 
and Its Oracle Properties. Journal of the American Statistical Association, 96, 
1348-1360. https://doi.org/10.1198/016214501753382273  

[8] Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic 
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 
301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x  

[9] Zhang, C.-H. (2010) Nearly Unbiased Variable Selection under Minimax Concave 
Penalty. The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-AOS729  

[10] Xiao, N. and Xu, Q.-S. (2015) Multi-Step Adaptive Elastic Net: Reducing False Posi-
tives in High-Dimensional Variable Selection. Journal of Statistical Computation 
and Simulation, 85, 3755-3765. https://doi.org/10.1080/00949655.2015.1016944  

[11] Fan, J. and Lv, J. (2008) Sure Independence Screening for Ultrahigh Dimensional 
Feature Space. Journal of the Royal Statistical Society: Series B (Statistical Metho-
dology), 70, 849-911. https://doi.org/10.1111/j.1467-9868.2008.00674.x 

[12] Ramsay, J.O. and Dalzell, C. (1991) Some Tools for Functional Data Analysis. Jour-
nal of the Royal Statistical Society. Series B (Methodological), 539-572.  

[13] Schulz-Streeck, T., Ogutu, J. and Piepho, H.-P. (2012) Genomic Selection Using 
Regularized Linear Regression Models: Ridge Regression, Lasso, Elastic Net and 
Their Extensions. Proceedings of the 15th European workshop on QTL Mapping 
and Marker Assisted Selection (QTLMAS), 6, S10. 

[14] Fan, J. and Lv, J. (2010) A Selective Overview of Variable Selection in High Dimen-
sional Feature Space. Statistica Sinica, 20, 101.  

[15] Saldana, D.F. and Feng, Y. (2016) SIS: An R Package for Sure Independence 
Screening in Ultrahigh Dimensional Statistical Models. Journal of Statistical Soft-
ware, VV.  

[16] Hu, Q. and Lin, L. (2017) Conditional Sure Independence Screening by Conditional 
Marginal Empirical Likelihood. Annals of the Institute of Statistical Mathematics, 
69, 63-96. https://doi.org/10.1007/s10463-015-0534-9 

[17] Jha, U.K. (2017) High-Dimensional Linear and Functional Analysis of Multivariate 
Grapevine Data. MS Thesis, Rochester Institute of Technology, Rochester. 

[18] Jacques, J. and Preda, C. (2014) Functional Data Clustering: A Survey. Advances in 
Data Analysis and Classification, 8, 231-255.  
https://doi.org/10.1007/s11634-013-0158-y 

[19] Febrero-Bande, M. and Oviedo de la Fuente, M. (2012) Statistical Computing in 
Functional Data Analysis: The R Package fda usc. Journal of Statistical Software, 51, 
1-28. https://doi.org/10.18637/jss.v051.i04 

[20] Ramsay, J. and Silverman, B. (2005) Functional Data Analysis. Springer Science & 
Business Media, Berlin/Heidelberg. https://doi.org/10.1002/0470013192.bsa239 

[21] Ramsay, J.O., Hooker, G. and Graves, S. (2009) Functional Data Analysis with R 
and MATLAB. Springer Science & Business Media, Berlin/Heidelberg.  

 

DOI: 10.4236/ojs.2017.74049 716 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2017.74049
https://doi.org/10.1071/SR10098
https://doi.org/10.1093/bioinformatics/btp711
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1080/00949655.2015.1016944
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1007/s10463-015-0534-9
https://doi.org/10.1007/s11634-013-0158-y
https://doi.org/10.18637/jss.v051.i04
https://doi.org/10.1002/0470013192.bsa239


U. K. Jha et al. 
 

https://doi.org/10.1007/978-0-387-98185-7 

[22] Elvidge, C.D. and Chen, Z. (1995) Comparison of Broadband and Narrow-Band 
Red and Near-Infrared Vegetation Indices. Remote Sensing of Environment, 54, 
38-48. https://doi.org/10.1016/0034-4257(95)00132-K 

[23] Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S., Perry, E.M. and 
Akhmedov, B. (2013) A Visible Band Index for Remote Sensing Leaf Chlorophyll 
Content at the Canopy Scale. International Journal of Applied Earth Observation 
and Geoinformation, 21, 103-112. https://doi.org/10.1016/j.jag.2012.07.020 

[24] Eismann, M.T. (2012) Hyperspectral Remote Sensing. SPIE Press, Bellingham, 
Washington DC, 458. https://doi.org/10.1117/3.899758 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact ojs@scirp.org  

 

DOI: 10.4236/ojs.2017.74049 717 Open Journal of Statistics 
 

https://doi.org/10.4236/ojs.2017.74049
https://doi.org/10.1007/978-0-387-98185-7
https://doi.org/10.1016/0034-4257(95)00132-K
https://doi.org/10.1016/j.jag.2012.07.020
https://doi.org/10.1117/3.899758
http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	Dimensionality Reduction of High-Dimensional Highly Correlated Multivariate Grapevine Dataset
	Abstract
	Keywords
	1. Introduction
	2. Elastic Net
	3. Multi-Step Adaptive Elastic Net
	4. Minimax Concave Penalty
	5. Sure Independence Screening (SIS)
	6. Functional Data Analysis
	6.1. Functional Regression Model
	6.2. Smoothing by Basis Representation

	7. Comparative Study for Wavelength Selection
	8. Discussion
	9. Conclusion
	Acknowledgements
	References

