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Abstract 
A large number of problems in engineering can be formulated as the optimi-
zation of certain functionals. In this paper, we present an algorithm that uses 
the augmented Lagrangian methods for finding numerical solutions to engi-
neering problems. These engineering problems are described by differential 
equations with boundary values and are formulated as optimization of some 
functionals. The algorithm achieves its simplicity and versatility by choosing 
linear equality relations recursively for the augmented Lagrangian associated 
with an optimization problem. We demonstrate the formulation of an opti-
mization functional for a 4th order nonlinear differential equation with 
boundary values. We also derive the associated augmented Lagrangian for this 
4th order differential equation. Numerical test results are included that match 
up with well-established experimental outcomes. These numerical results in-
dicate that the new algorithm is fully capable of producing accurate and stable 
solutions to differential equations. 
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1. Introduction 

Many problems in engineering are described by boundary value problems of 
differential equations of order 2k in the form of  

( ) ( )(2 ), , , , , 0, , ,kg x y y y y x a b′ ′′ = ∈                   (1) 

subject to certain boundary conditions, where x  is the independent variable in 
interval ( ),a b ⊂ , k  is a positive integer, ( )1 2 2 ,kg +∈   , and  
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( ) ( )2 ,ky y x a b= ∈  is a solution to (1). Such a solution is also referred to as a 
strong solution because of the requirement that ( )2 ,ky a b∈ . 

However, a strong solution to (1) may not exist for some problems. Even 
when a strong solution to (1) exists, such a solution may be too costly to calcu-
late numerically in practice. 

Therefore, weak formulations of (1) are preferred. Assume that (1) admits a 
weak formulation in the following form.  

( ) ( )
( )

( ) ( )

0

, , , , , , , , , d ,

, , 0, ,

b k k
a

a y G x y y y x

y a y

η η η η

η η

 ′ ′≡

∃ ∈ = ∀ ∈

∫  

 
            (2) 

where   is usually a subset of the Hilbert space ( ),k a b  subject to some 
boundary conditions, 0  is a subspace of ( ),k a b  satisfying some homoge-
neous boundary conditions, and ( )1 2 3,kG +∈   . In other words, a solution 
to (1) also satisfies (2). 

A solution to (2) is referred to as a weak solution to (1) because of  
( ),ky a b∈  instead of ( )2 ,ky a b∈ . 

We also assume that for y∈ , there exists a certain functional  

( ) ( )( ), , , , d ,
b k
a

J y x y y y x′= ∫                    (3) 

where ( )1 2 ,k+∈     such that a stationary point of functional ( )J y  sa-
tisfies (2). A stationary point y  of (3) satisfies  

( ) 0
0

d 0, ,
d t

J y t
t

η η
=

+ = ∀ ∈                    (4) 

where η  is referred to as a test function. Equivalently, a stationary point y  
of (3) satisfies  

0

( )
( )

,

d 0.
b k

ka
x

y y y

η

η η η

∀ ∈


 ∂ ∂ ∂ ′+ + + =  ′∂ ∂ ∂ 
∫ 



                 (5) 

Refer to [1] for more details. 
We see that a weak solution of (1) corresponds to an optimization problem of 

functional ( )J y  defined in (3). Such a weak solution is simply a stationary 
point of (3). 

As pointed out in [1], a boundary value problem of inhomogeneous boundary 
conditions can be effectively treated as a problem with homogeneous boundary 
conditions by introducing a special function satisfying the inhomogeneous 
boundary conditions. For simplicity, we will assume homogeneous boundary 
conditions for the rest of this paper. Under this assumption,  

0 .≡                              (6) 

Hestenes [2] and Powell [3] introduced the augmented Lagrangian methods 
or the method of multipliers in 1969 for the study of optimization problems. 
Comprehensive applications of augmented Lagrangian methods for optimiza-
tion and boundary value problems were investigated by Bertsekas [4], Fortin and 
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Glowinski [5]. 
Even though most research on the augmented Lagrangian methods have been 

focusing on their direct applications in optimization, there have been consistent 
interests in using the augmented Lagrangian methods in other fields over the 
years. Recent applications of the augmented Lagrangian methods include image 
processing and computer vision [6], numerical solutions to Laplace equation 
with various boundary values [7], mechanics [7] [8] [9], medical imaging and 
computational biology [10], geophysics [11], ontology regarding big data repre-
sentation and storage [12], and elastica theory [13], to name just a few. 

In this paper, we’ll investigate the applications of the augmented Lagrangian 
methods in boundary value problems of differential equations associated with 
problems from engineering. These are usually higher order differential equations 
(4th or higher). The feature of higher order of these problems is exploited to al-
low the development of simple and stable methods for their numerical solutions 
using finite elements. 

The rest of the paper is organized in the following way. In section 2, we briefly 
review the augmented Lagrangian methods for optimization problems, and the 
finite element methods for solving weak formulation (2). In section 3, we’ll in-
troduce a special formulation for the construction of an augmented Lagrangian 
for finding numerical solutions to higher order differential equations using finite 
elements. We show a sample boundary value problem of a higher order nonli-
near differential equation, its weak formulation, and the associated optimization 
problem in section 4. We’ll present numerical tests for this sample differential 
equation in section 5. The numerical results demonstrate that this new version 
of the augmented Lagrangian methods is accurate, stable, versatile, and easy to 
implement.  

2. Augmented Lagrangian Methods and Finite Element 
Solutions  

Generally speaking, an analytic solution to an optimization problem is not availa-
ble. We therefore focus on numerical solutions using augmented Lagrangian 
methods and finite elements.  

2.1. Augmented Lagrangian Methods  

For a constrained optimization problem  

( )

( )

min
subject to

0, ,

y

j

J y

c y j K

∈


 = ∀ ∈



                        (7) 

where K  is a subset of the set of all natural numbers, and   is some func-
tional space, an augmented Lagrangian method for (7) introduces an associated 
augmented Lagrangian  

{ } { }( ) ( ) ( ) ( )21, ,
2j j j j j jr

j K j K
y J y c y r c yµ µ

∈ ∈

≡ + +∑ ∑             (8) 
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and the associated unconstrained optimization problem  

{ } { }( )min , ,
j jry

y µ
∈
                         (9) 

where for each j K∈ , jµ  is a Lagrangian multiplier, and jr  is a pre-chosen 
constant serving as a penalty when ( )jc y  is not sufficiently small. 

Notice that the function spaces in (7) and (9) are identical. In particular, both 
(7) and (9) impose the same regularity requirements on y  through  . 

When an optimization problem is associated with a boundary value problem 
of a differential equation, we have the leeway for constructing the associated 
augmented Lagrangian that imposes weaker regularity requirements than those 
of the original optimization problem. We’ll present the formulation later in a 
separate section.  

2.2. Finite Element Methods  

Assume that N  is a N -dimensional subspace that approximates  
( ),k a b⊂   in (2). Assume also that { }1

N
jφ  is a basis for N . The Galerkin 

method of finite elements amounts to finding a function N Ny ∈  such that  

( ), 0, ,N Na y η η= ∀ ∈                      (10) 

where ( ),a ⋅ ⋅  is defined in (2). 
Because N  is finite dimensional, there exist unique coefficients { }1

N
jα  

such that  

1
.

N

N j j
j

y α φ
=

=∑                          (11) 

Because (10) is true for all Nη ∈ , it must be true for every ,1j j Nφ ≤ ≤ .  

1
, 0,1 .

N

j j j
j

a j Nα φ φ
=

 
= ≤ ≤ 

 
∑                    (12) 

In fact, (12) forms a system of N  equations for N  unknown coefficients 
{ }1

N
jα . These equations are linear or nonlinear depending on ( ),a ⋅ ⋅  being li-

near or nonlinear. Finding an approximate solution to (2) corresponds to solv-
ing the system of Equations (12) for coefficients { }1

N
jα . 

In particular, because ( , )k
N a b⊂ ⊂   , it is required that ( , )k

j a bφ ∈  
for 1 j N≤ ≤ . Such regularity requirement may become too demanding on the 
basis for N  when k  is big. 

Using weaker regularity requirements generally results in the following advan- 
tages.  

1) We may use simpler test function η  that improves overall numerical effi-
ciency.  

2) The condition numbers for linearized matrices of (12) are much smaller 
[1].  

Our goal is to find new approaches that use the least regularity requirement 
possible, to be introduced next.  
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3. Augmented Lagrangian Methods for Differential  
Equations  

In this section, we propose a new approach for the construction of augmented 
Lagrangian associated with boundary value problems of differential equations. 
This new approach exploits the feature of higher order of the differential equa-
tions to arrive at the least regularity requirements on weak solutions to boundary 
value problems. The approach coincides with those discussed in [5] for differen-
tial equations of second order or less. 

Recall that to find a weak solution y  to (1) means to solve for y  in (5). 
That means all test functions must be from ( ),k a b . We now propose the fol-
lowing augmented Lagrangian associated with (3).  

{ } { } { }( ) ( )

( ) ( )

( )

1

2
1 11 1

0

0

, , , , , , d

1                                d d ,
2

,
,1 ,

, , ,1 ,

j

b
j j kr a

b bk k
j j j j j jj ja a

j j

k j

y p x y p p x

p p x r p p x

y
p j k

p a b j k

µ

µ

µ

− −= =

 = …


 ′ ′+ − + −

 ∈
 ∈ ≤ <
 ∈ ≤ ≤



∫

∑ ∑∫ ∫

 






 (13) 

where ,0 <j j k≤ , is a certain subspace of 1( , )a b  that is associated with 
some of the homogeneous boundary conditions of (1) (see assumption for (6)), 
{ }1

k
jp  are supplementary variables to be linked to y  by the recursive linear 

equality relations  

1 , 1 ,j jp p j k−′ = ≤ ≤                       (14) 

and 0p y≡ , { }1

k
jµ  are Lagrangian multipliers, which are also functions of 

x , and { }1

k
jr  are pre-chosen constants serving as penalty in case any of the 

linear equality relations in (14) is not met satisfactorily. 
We immediately recognize the major difference between functional ( )J y  of 

(3) and the augmented Lagrangian of (13). Whereas the regularity requirement 
for ( )J y  of (3) is  

( ), ,ky a b∈ ⊂                         (15) 

the regularity requirements for augmented Lagrangian of (13) are  

( )
( )

1

0

, , 0 1,

, , ,1 ,
j j

k j

p a b j k

p a b j kµ

∈ ⊂ ≤ ≤ −

∈ ≤ ≤

 


                (16) 

independent of k , the order of the differential equation. 
The following is the major conclusion of this paper. 
Theorem 3.1 If { } { }( ), ,j jy p µ  is a stationary point of (13) where 0p y≡ , 

then { }jp  satisfies (14), and ( , )ky a b∈ ⊂   is a weak solution to ( )J y  of 
(3), which is also a weak solution to (1).  

Proof. A stationary point { } { }( ), ,j jy p µ  for the augmented Lagrangian  

{ } { }( ){ } , ,
jr j jy p µ  of (13) satisfies,  
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{ } { }( ){ } 0
0

d , , 0,
d jr j j

t

y t p
t

η µ
=

+ =                    (17) 

{ }( ){ } 1,
0

d , , , , 0,1 ,
d jr i i j

t

y p t i k
t

η µ
=

… + … = ≤ <              (18) 

{ }( ){ } 1,
0

d , , , 0,
d jr k k j

t

y p t
t

η µ
=

… + =                  (19) 

{ }( ){ } 2,
0

d , , , , 0,1 ,
d jr j i i

t

y p t i k
t

µ η
=

… + … = ≤ ≤              (20) 

where 0 0η ∈ , 1,i iη ∈  for 1 i k≤ < , 0
1, ( , )k a bη ∈ , 0

2, ( , )i a bη ∈  for 
1 i k≤ ≤ , are the respective test functions. 

The four stationary point relations (17), (18), (19) and (20) expand into  

( ) ( )1 0 1 0 1 1 0, , , , d d d 0,
b b b

ka a a
x y p p x x r y p x

y
η µη η∂ ′ ′ ′… + + − =

∂∫ ∫ ∫        (21) 

( )

( ) ( )

1, 1, 1 1,

1 1, 1 1 1,

, , , , d d d

d d 0,   1 ,

b b b
i i i i i ia a a

i
b b

i i i i i i i ia a

x y p x x x
p

r p p x r p p x i k

η µη µ η

η η

+

− + +

∂ ′… … − +
∂

′ ′ ′− − + − = ≤ <

∫ ∫ ∫

∫ ∫


        (22) 

( ) ( )1, 1, 1 1,, , , d d d 0,
b b b

k k k k k k k ka a a
k

x y p x x r p p x
p

η µ η η−
∂ ′… − − − =
∂∫ ∫ ∫      (23) 

( )1 2, d 0, 1 .
b

i i ia
p p x i kη−′ − = ≤ ≤∫                     (24) 

Because (24) is true for any 0
2, ( , )i a bη ∈  for 1 i k≤ ≤ , it proves that { }jp  

satisfies the recursive linear equality relations (14). That is,  

( )( ) 0
0 1 0 2 1 1, , , , , ,k

k kp y p p y p p y p p y a b−′ ′ ′ ′′ ′= = = = = … = = ∈       (25) 

in weak sense, implying that ( , )ky a b∈ . 
Consequently, (21), (22) and (23) reduce to  

( )1 0 1 0, , , , d 0,
b

ka
x y p p x

y
η µη

 ∂ ′… + = ∂ 
∫                 (26) 

( ) 1, 1, 1 1,, , , , d 0, 1 ,
b

i i i i i ia
i

x y p x i k
p

η µη µ η+
 ∂ ′… … − + = ≤ < ∂ 

∫         (27) 

( ) 1, 1,, , , d ,
b

k k k ka
k

x y p x
p

η µ η
 ∂

… − ∂ 
∫                  (28) 

for any test functions 0 0η ∈ , 1,i iη ∈  for 1 i k≤ < , 0
1, ( , )k a bη ∈ . 

0 ( , )k a bη∀ ∈ ⊂  , if we choose functions 0η  and i1,η  for ki ≤≤1  in the 
following ways,  

0 ,η η=  

( )
1, , 1 ,i

i i kη η= ≤ ≤  

then (26), (27) and (28) become  

( )1 1, , , , d 0,
b

ka
x y p p x

y
η µη

 ∂ ′… + = ∂ 
∫                (29) 
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( ) ( ) ( ) ( 1)
1, , , , d 0, 1 ,

b i i i
i i ia

i

x y p x i k
p

η µη µ η +
+

 ∂
… … − + = ≤ < ∂ 

∫       (30) 

( ) ( ) ( ), , , d .
b k k

k ka
k

x y p x
p

η µ η
 ∂

… − ∂ 
∫                 (31) 

After adding up all equations in (29), (30) and (31), we arrive at  

( ) ( ) ( )
1

1

0

, , , , , , , , d 0,

( , ).

kb i
k ia

i i

k

x y p p x y p x
y p

a b

η η

η
=

 ∂ ∂
… + … … = ∂ ∂ 

∀ ∈ ⊂

∑∫  

 

     (32) 

Using results in (25) along with (32), we have proved that ( , )ky a b∈ ⊂   
satisfies (5) for any test function 0 ( , )k a bη ∈ ⊂  . That completes the proof. 

We therefore have three approaches for finding approximate solutions to (1).  
1) Solve (1) for an approximate strong solution in 2 ( , )k a b  directly, e.g., by 

a certain finite difference method. This approach demands the highest regularity 
requirement where functions involved must belong to 2 ( , )k a b . 

2) Solve (1) for an approximate weak solution in ( , )k a b  via (2), (10) and 
(12). This approach demands that functions involved belong to ( , )k a b . This 
has been the standard approach found in most work related to finite element 
methods. 

3) Solve (1) for an approximate weak solution in 1( , )a b  by finding statio-
nary point of the augmented Lagrangian (13). This approach demands that 
functions involved belong to 1( , )a b , regardless of the order 2k  of differen-
tial Equation (1). This approach achieves the minimum regularity requirement 
possible for any differential equation of order second or higher.  

The method that uses the augmented Lagrangian (13) has the least regularity 
requirement among the three approaches. 

Regardless of the order of differential Equation (1), finding approximate solu-
tion using the augmented Lagrangian (13) with finite elements is simple and 
standard as illustrated below. 
• Because of (16), we can always use Hermite cubic polynomials to approx-

imate ,0jp j k≤ < , and use piecewise linear functions to approximate kp  
and ,1j j kµ ≤ ≤ .  

• The bases for the corresponding finite dimensional spaces for finite elements 
are the Hermite cubic shape functions and linear shape functions, respec-
tively.  

• The approximate solutions are obtained from (12) by substituting Hermite 
cubic shape functions and linear shape functions for { }jφ , respectively.  

We’ll implement the augmented Lagrangian methods associated with Lagran-
gian (13) for finding approximate solution to a boundary value problem of a 4th 
order nonlinear differential equation in the next section.  

4. A Sample Differential Equation  

Many of the problems in engineering are described by boundary value problems 
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of differential equations of orders two or higher. An example is the following 
nonlinear Euler-Bernoulli beam equation [14] [15] [16],  

( ) ( ) ( ) 0, 0 ,r aEIv T T v f v x L′′′′ ′′− + − = < <               (33) 

with various boundary conditions (natural boundary conditions are not en-
forced by standard arguments), such as:  

( ) ( )0 0 0,v v′= =                          (34) 

for a rectangular beam of length L, width w  and thickness t . Here, v  is the 
deflection of the beam, E Young’s modulus, I moment of inertia of cross-section 
of the beam, rT  represents residual force which is independent of v ,  

2

0
d ,

2
L

a
EwtT v x

L
′= ∫                         (35) 

represents the axial force in the beam, and ( )f v  is the intensity of external 
force exerted on the beam which is assumed to be continuous in v . We see that 
(33) along with (34) is just a special case of (1) for 2k = . A strong solution v  
of (33) requires that 4 (0, )v L∈ . 

Subspace   associated with (33) becomes  

( ){ }2 0, , satisfies (34) .v v L v= ∈                  (36) 

Because boundary conditions in (34) are themselves homogeneous, the sub-
space 0  of all test functions is identical to  , as has been assumed back in 
(6). 

When multiplying any test function 0η ∈  to (33), integrating the result 
over [0, ]L , and applying integration by parts, we arrive at the following.  

( ) ( ) 00
d 0, .

L
r aEIv T T v f v xη η η η′′ ′′ ′ ′ + + − = ∀ ∈ ∫             (37) 

In other words, a solution to (33) also satisfies (37). 
To find a solution to (33) becomes to find a function v∈  such that (37) is 

true. A solution to (37) is therefore called a weak solution to (33) because the 
regularity requirement has become  

2 (0, ).v L∈ ⊂                          (38) 

We also call (37) the weak formulation of (33). 
Furthermore, for any v∈ , if we define  

( ) ( )2 2

0

2 d ,
2 4

L r aT TEIJ v v v F v x+ ′′ ′= + −  ∫              (39) 

where ( ) ( )F v f v′ = , we can verify with some algebraic manipulations that a 
stationary point of ( )J v  in (39) is a weak solution to (33). Details are omitted 
here for brevity. 

We’ve shown that (33) indeed admits a weak formulation (37). A weak solu-
tion of (33) corresponds to a stationary point of (39). Such a stationary point is a 
solution to an optimization problem of functional ( )J v  of (39). 



X. F. Li 
 

247 

Based on functional ( )J v  in (39), we can define the associated augmented 
Lagrangian as shown below.  

( )

( ) ( )

( ) ( )

1 2

2 2
, 1 2 1 2 2 10

1 1 2 1 20 0

2 2
1 1 2 1 20 0

2, , , , ( ) d
2 4

 d d

1 1 d d ,
2 2

L r a
r r

L L

L L

T TEIv p p p p F v x

v p x p p x

r v p x r p p x

µ µ

µ µ

+ = + −  

′ ′+ − + −

′ ′+ − + −

∫

∫ ∫

∫ ∫



     (40) 

where ( ) 0 0 0
1 2 1 2 0 1, , , ,v p p µ µ ∈ × × × ×     ,  

{ }
{ }

1
0

1
1 1 1 1

(0, ), satisfies (34) ,

(0, ), (0) 0 ,

v v L v

p p L p

= ∈

= ∈ =

 

 
                (41) 

and  

( ) 2
1 10

d .
2

L
a a

EwtT T p p x
L

≡ = ∫                       (42) 

A stationary point of (40) hence satisfies the following five equations.  

( ) ( )
( )

( ) ( )

( )

( )

0 1 0 1 1 00 0 0

1 1,1 2
1 1,1 1 1 1,1 2 1,10 0 0 0

1 1 1,1 2 1 2 1,10 0

2 1,2 2 1,2 2 1 2 1,20 0 0

1 2,10

d d d 0,

,2 d d d d
2 4

d d 0,

d d d 0,

L L L

L L L Lar a

L L

L L L

L

f v x x r v p x

T pT T p x p x x x

r v p x r p p x

EIp x x r p p x

v p

η µη η

η
η µη µ η

η η

η µ η η

η

′ ′ ′− + + − =

′+ ′+ − +

′ ′ ′− − + − =

′− − − =

′ −

∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫

∫
( )1 2 2,20

d 0,

d 0,
L

x

p p xη













=


′ − =∫

     (43) 

for their respective test functions  
0 0 0

0 0 1,1 1 1,2 2,1 2,2, , (0, ), (0, ), (0, ),L L Lη η η η η∈ ∈ ∈ ∈ ∈          (44) 

and  

1 1,1 1 1,10
( , ) .

L
a

EwtT p p dx
L

η η′ = ∫                      (45) 

Notice that boundary conditions (34) become  

( ) ( )0 0 0,v v′= =                          (46) 

and  

( )1 0 0.p =                            (47) 

Finding an exact solution to a stationary point from (43) is highly unlikely, if 
not impossible. Fortin and Glowinski [5] suggested an iterative algorithm (called 
ALG1) for finding approximate solution to (43) as shown below. 

Steps of ALG1.  
1) Choose arbitrary initial guesses (0)

1µ  and (0)
2µ .  

2) For 0j ≥ , calculate ( )( ) ( ) ( ) 0
1 32 0 1, ,j j jv p p ∈ × ×    by solving  
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( ) ( )

( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )
0 1 0 1 1 00 0 0

( ) ( )
21 1 1,1( ) ( ) ( )

1 1,1 1 1 1,10 0 0

( ) ( ) ( )
2 1,1 1 1 1,10 0

( ) ( )
2 1 2 1,10

d d d 0,

2 ,
d d d

2 4

d d

d

L L Lj j j j

j j
L L Lr a aj j j

L Lj j j

L j j

f v x x r v p x

T T p T p
p x p x x

x r v p x

r p p

η µ η η

η
η µ η

µ η η

η

 ′′ ′− + + − = 
 

′+
+ −

 ′′+ − − 
 

 ′ ′+ − 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫

( )( ) ( ) ( ) ( )
2 1,2 2 1,2 2 1 2 1,20 0 0

0,

d d d 0,
L L Lj j j j

x

EIp x x r p p xη µ η η












 =



  ′− − − =   
∫ ∫ ∫

    (48) 

where test functions 0η , 1,1η  and 1,2η  satisfy (44), then update  
( 1) ( 1) 0
1 2,j jµ µ+ + ∈  by  

( )

( )

( 1) ( ) ( ) ( )
1 1 1 1

( 1) ( ) ( ) ( )
2 2 2 1 2

,

,

j j j j

j j j j

v p

p p

µ µ ρ

µ µ ρ

+

+

  ′= + − 
 


  ′= + −   

                  (49) 

where 1ρ  and 2ρ  are two pre-chosen positive constants.  
3) Check for convergence. Repeat step 2 when needed. Convergence is reached 

when the following conditions are met,  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1
1 1 1

1
2 2 2

1
1 1 1

1
2 2 2

,

,

,

,

,

j j j
r

j j j
r

j j j
r

j j j
r

j j j
r

v v v

p p p

p p p

ε

ε

ε

µ µ ε µ

µ µ ε µ

+

+

+

+

+

 − ≤



− ≤

 − ≤

 − ≤

 − ≤

                     (50) 

for a pre-chosen relative tolerance rε .  
It seems that (48) is just as difficult to solve as (43) is. Fortin and Glowinski 

[5] suggested yet another iterative algorithm (called ALG2) for finding approx-
imate solution to (48) as shown below. 

Steps of ALG2.  
1) For a fixed j , let ( ,0) ( 1)

1 1
j jp p −= , ( ,0) ( 1)

2 2
j jp p −= .  

2) For 1m ≥ ,  
a) 0 0η∀ ∈ , solve (51) for ( , )j mv ,  

( ) ( )( , ) ( ) ( , ) ( , 1)
0 1 0 1 1 00 0 0
d d d 0,

L L Lj m j j m j mf v x x r v p xη µ η η− ′′ ′− + + − = 
 ∫ ∫ ∫      (51) 

subject to boundary conditions (46).  
b) 1,1 1η∀ ∈ , 0

1,2η∀ ∈ , solve system of Equations (52) for ( , )
1

j mp  and 
( , )
2

j mp ,  
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( ) ( ) ( )

( )

( )

( , ) ( , )
21 1 1,1( , ) ( , )

1 1,1 10 0

( ) ( ) ( , ) ( , )
1 1,1 2 1,1 1 1 1,10 0 0

( , ) ( , )
2 1 2 1,10

( , ) ( )
2 1,2 2 1,2 20 0 0

2 ,
d d

2 4

d d d

d 0,

d d

j m j m
L Lr a aj m j m

L L Lj j j m j m

L j m j m

L L Lj m j

T T p T p
p x p x

x x r v p x

r p p x

EIp x x r

η
η

µ η µ η η

η

η µ η

′+
+

 ′′− + − − 
 

 ′ ′+ − = 
 

− −

∫ ∫

∫ ∫ ∫

∫

∫ ∫ ( )( , ) ( , )
1 2 1,2d 0,j m j mp p xη











  ′ − =   

∫

    (52) 

subject to boundary conditions (47).  
3) Repeat step 2 for a certain number of times, or until convergence. Then  

( ) ( , )
1

( ) ( , )
1 1 1
( ) ( , )
2 1 2

lim ,
lim ,
lim .

j j m
m

j j m
m

j j m
m

v v
p p
p p

≥

≥

≥

 =


=
 =

                       (53) 

In particular, we solve (51) and (52) using the standard finite element ap-
proach where we approximate ( , )j mv  and ( , )

1
j mp  by the Hermit cubic polyno-

mials, and approximate ( , )
2

j mp , ( )
1

jµ  and ( )
2

jµ  by piecewise linear functions. 
We’ll present numerical results from solving (33) using ALG1 and ALG2 in 

the next section.  

5. Numerical Tests  

In this section, we study a microbeam switch that is electrostatically actuated by 
an applied voltage. Hu, Chang and Huang [17] first studied such a problem in 
2004. The structure [17] can be schematically described as a thin metal beam 
hanging over a substrate separated by some insulator, where one end of the mi-
crobeam is fixed and the other is free (fixed-free beam). The beam is pulled 
(deflected) towards the substrate when a voltage is applied between the beam 
and the substrate. The action of such a structure is modelled using (33) subject 
to boundary conditions (34). We are interested in the gap between the free end 
of the microbeam and the substrate subject to different applied voltages. 

The specifics of the microbeam structure are listed below.  
• Beam length, width and thickness are 20 mm, 5 mm and 57 µm, respectively. 
• Initial gap between microbeam and substrate is 92 µm. 
• Young’s modulus is 1.558 × 1011 Pa.  
• Permittivity of vacuum is 8.85 × 10−12 F/m.  
• Poisson’s ratio of 0.06 is used because the microbeam is considered wide, i.e., 

width is significantly greater than thickness.  
We present in Table 1 numerical results from solving (33) subject to boun-

dary conditions (34). Our numerical results indicated that the newly introduced 
augmented Lagrangian methods (ALM) are fully capable of producing quality 
solutions that match up well with experiment data. The number of finite ele-
ments used is denoted by ne  in Table 1. 

The relative errors of results obtained from ALM are comparable to those in 
[17] and [16], for all cases of finite element approximations. In fact, it appears  
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Table 1. Comparison of results, ρ1 = ρ2 = 0.0208, r = s = 330, and εr = 0.0001. 

Voltage 
(V) 

End gaps 
(µm) by 

[17] 

End gaps (µm) by ALM and corresponding relative errors 

ne = 12 ne = 24 ne = 48 ne = 96 

20 90.5 90.3 −0.22% 90.3 −0.22% 90.3 −0.22% 90.3 −0.22% 

40 84.6 84.6 −0.01% 84.6 −0.01% 84.6 −0.01% 84.6 −0.01% 

60 70.0 71.2 1.7% 71.2 1.70% 71.2 1.69 71.2 1.70% 

65 64.0 64.1 0.13% 64.1 0.13% 64.1 0.13% 64.1 0.13% 

67 59.0 59.3 0.49% 59.3 0.49% 59.3 0.49% 59.3 0.49% 

 
that the augmented Lagrangian methods have already converged with relatively 
small number (i.e., 12) of finite elements because increasing the number of finite 
elements used does not cause much of a change in accuracy. 

6. Conclusion 

An algorithm is developed based on the augmented Lagrangian methods and the 
finite element, exploiting the order of the differential equation it solves. Inde-
pendent of the order of the differential equation, we are always able to use only 
Hermite cubic and linear finite elements to approximate variables involved. As a 
result, this algorithm is easy to implement, and is capable of producing accurate 
and stable solutions to engineering problems that admit weak formulations as-
sociated with optimization of some functionals. Extensions of this algorithm for 
solving engineering problems described by higher order partial differential equ-
ations are being investigated by the author. Results will be submitted for publi-
cation in the near future. 
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