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Abstract 
In this paper, the improved Adomian decomposition method (ADM) is applied to 
the nonlinear Schrödinger’s equation (NLSE), one of the most important partial dif-
ferential equations in quantum mechanics that governs the propagation of solitons 
through optical fibers. The performance and the accuracy of our improved method 
are supported by investigating several numerical examples that include initial condi-
tions. The obtained results are compared with the exact solutions. It is shown that 
the method does not need linearization, weak or perturbation theory to obtain the 
solutions. 
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1. Introduction 

The study of optical solitons has been going on for the past few decades [1]-[10]. The 
governing equation for the propagation of optical solitons for trans-continental and 
trans-oceanic distances through an optical fiber is given by the nonlinear Schrödinger’s 
equation (NLSE) that can be derived from the Maxwell’s equation with the aid of mul-
tiple scale analysis. For birefringent fibers and dense wavelength division multiplexed 
(DWDM) systems, this NLSE is generalized to the corresponding vector version. The 
scalar NLSE, with constant coefficients, which is typically used to study solitons in a 
polarization preserving fiber is integrable by the classical method of inverse scattering 
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transform (IST) and for Kerr law nonlinearity only. The NLS equation plays an impor-
tant role in the modeling of several physical phenomena such as the propagation of 
optical pulses, waves in fluids and plasma, self-focusing effects in lasers, and trapping of 
atomic gas in Bose-Einstein condensates. Several numerical methods have been pro-
posed to solve the nonlinear Schrödinger’s equation (NLSE) approximately. Many of 
them are explicit difference scheme [11] [12] and Adomian decomposition method [13] 
[14] [15] [16] [17]. The Adomian decomposition method provides the solution in a 
rapid convergent series with computable terms. This method was successfully applied 
to nonlinear differential equations. Different modifications to solve nonlinear differen-
tial equations are given in [18] [19] [20]. The modifications arise from evaluating diffi-
culties specific for the type of problem under consideration. The modification usually 
involves only a slight change and is aimed at improving the convergence or accuracy of 
the solution. The main goal of this paper is to apply some modifications of Adomian 
decomposition method to the nonlinear Schrödinger’s equation and compare the re-
sults with the exact solutions. 

2. Analytical Solution for Nonlinear Schrodinger Equation (NLSE) 

The dimensionless form of the generalized NLSE that is going to be studied in this pa-
per is given by 

( ) ( ) 2i  0m m m

t xx
u u F u uβ γ+ + =  

Here, the dependent variable u is a complex valued function, while x and t are the 
two independent variables. The coefficients β  and γ  are constants and m is a con-
stant parameter, where 1m ≥ , transforms the NLSE to its generalized form. The gene-
ralized NLSE is partial differential equation that is not integrable, in general. The non- 
integrability is not necessarily related to the nonlinear term in it. Also, in generalized 
NLSE, F is a real-valued algebraic function and it is necessary to have the smoothness of 
the complex function 2 :F u u C C→ , considering the complex plane C as a two-  
dimensional linear space R2. The Kerr law of nonlinearity originates from the fact that a 
light wave in an optical fiber faces nonlinear responses from non-harmonic motion of 
electrons bound in molecules, caused by an external electric field. Even though the 
nonlinear responses are extremely weak, their effects appear in various ways over long 
distance of propagation that is measured in terms of light wavelength. The origin of 
nonlinear response is related to the non-harmonic motion of bound electrons under the 
influence of an applied field. As a result the induced polarization is not linear in the 
electric field, but involves higher order terms in electric field amplitude. In the case of 
Kerr law nonlinearity where ( )F u u= , thus the NLSE is given by 

2i 0t xxu u u uγ+ + =                         (2.1) 

The aim of this section is to obtain an exact bright, dark, and singular 1-soliton solu-
tion to this equation. The Ansatz method is used. In order to set up the starting point, 
the solitons are written in the phase-amplitude format as ( ) ( ) ( ),, , ei x tu x t P x t φ= . Where 
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P is the amplitude component of the soliton and ( ),x tφ  is its phase component, de-
fined as ( ), .x t kx tφ θ= − + +  k is the frequency of the solution’s while ω represents 
the wave number and θ  is the phase constant. Substituting (2.2) and (2.3) into (2.1)  

and decomposing into real and imaginary parts lead to ( )
2

2 3
12 0P P k P

x
ω γ∂

− + + =
∂

 

and 0P Pk
t x

γ∂ ∂
− ⋅ =

∂ ∂
. From the imaginary part equation it is possible to obtain the  

speed v of the soliton as v kγ= − . The real part equation will be integrated from three 
types of solitons, namely, the bright, dark and singular soliton solution. 

2.1. Bright Soliton 

For bright solitons, the starting hypothesis is 

sech pP A τ=                           (2.2) 

and 

( )–B x vtτ =                           (2.3) 

where, A represents the amplitude of the soliton and B is the inverse width of the soli-
ton and v is the speed of the soliton. 

( ) ( ) ( )2 2 2 2 2 3 3sech 1 sech sech 0p p pA k p B A pB p Aω τ τ γ τ++ − + ⋅ + − =    (2.4) 

Balancing principle yields 

1p =                               (2.5) 

Substituting (2.5) into (2.4) we get 

( ) ( )2 2 2 3 3 3sech 2 sech sech 0A k B A B Aω τ τ γ τ+ − + ⋅ − =          (2.6) 

Setting the coefficients of the linearly independent functions sechτ  to zero leads to 

( )2 2 .B kω = −  From coefficient 3sech τ  we get 2 22 0B Aγ− =  and therefore 

.
2

B Aγ
=  This leads to the bright soliton solution 

( ) ( ) ( )-, sech e .i kx tu x t A B x vt ω θ+ += −    

which will exist for the necessary constraints in place. 

2.2. Dark Solitons 

For dark solitons, the starting hypothesis is given by 

tanh pP A τ=                             (2.7) 

For dark solitons the parameters A and B are free parameters. Substituting and ap-
plying Balancing principle yields 

( ) ( )2 2 2 3 32 tanh 2 tanh 0A k B AB Aω τ γ τ+ + − + =              (2.8) 

From coefficient of the tanhτ  into (2.8), we get 2 2 0k Bω + + =  and therefore 

( )2 2 .B kω = − −  From coefficient of 3tanh τ , we get 2 22 0B Aγ− − =  and therefore  
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.
2

B Aγ
= −  This gives dark soliton solution ( ) ( ) ( ), tanh ei kx tu x t A B x vt ω θ− + += −     

along with their respective constraints as indicated. 

2.3. Singular Solitons 

For singular solitons, the starting hypothesis is given by csch pP A τ= . Upon substi-
tuting and applying balancing principle yields 

( ) ( )2 2 2 3 3csch 2 csch 0A k B AB Aω τ γ τ+ − − + =              (2.9) 

From coefficient of csechτ  into (2.9), we get 2 2 0k Bω + − =  and therefore 

( )2 2 .B kω = −  From coefficient of 3cech τ , we get 2 22 0B Aγ− − =  and therefore 

.
2

B Aγ
= −  These lead to singular soliton solutions 

( ) ( ) ( ), csch e .i Kx tu x t A B x vt ω θ− + += −    

which will exist for the necessary constraints in place. 

3. Nonlinear Schrodinger Equation by Standard Adomian Method 
(SADM) 

The NLS equation describes the spatio-temporal evolution of the complex field 
( ),u u x t C= ∈  and has the general form (2.1) with the initial condition 

( ) ( ),0u x f x=                           (3.1) 

The solution of a nonlinear Schrödinger equation will be reduced by using standard 
Adomian decomposition method [21]. Equation (2.1) is rewritten in an operator form 
as 

2i 0xxLu u u uγ+ + =⋅                        (3.2) 

where ( ) ( )1

0

  and  . . d .
t

L L t
t

−∂
= =
∂ ∫  Then, the solution function, which obtains by Ado-  

mian decomposition method is assumed to be given by a series form 

( ) ( )
0

, ,
n

nu x t u x t
∞

=

= ∑                         (3.3) 

where the components nu  are going to be determined recurrently, while the nonlinear 
term is ( ) 2F u u u= ⋅  in (2.1) is decomposed into an infinite series of polynomials of 
the form 

( )
0n

nF u A
=

∞

= ∑                            (3.4) 

The nA  called Adomian polynomials of 0 1, , nu u u  defined by 

00

1 , 0,1, 2,3
!

n
p

n pn
p

dA f u n
n d

λ

λ
λ

∞

==

  
= =  

   
∑                (3.5) 
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Operating on both sides of Equation (3.2) with the integral operator 1L−  after using 
the initial displacements given by (3.1) and substituting Equations (3.3) and (3.4) into 
the resulting functional equation it gives 

( ) ( ) ( )2
0 0 0

1, i ,n
n

n n
n n

u x t f x L u x t A
x

γ
= = =

∞ ∞ ∞
−  ∂    

= + +    ∂     
∑ ∑ ∑            (3.6) 

Then following the Adomian decomposition method introduced by Wazwaz [13] in 
order to solve Equation (3.6) the following recurrence relation is proposed 

( ) ( )
( ) ( ) ( ) ( )

0

1 1 1
1

,

, i i i ,  0
xx xxk k k k k

u x t f x

u x t L u A L u L A kγ γ− − −
+

 =


= + = + ≥
         (3.7) 

Setting 2 .u u=  u the Adomian polynomials kA ;   0,1, 2,k =   that represent the 
nonlinear term ( )F u . 

4. The Modifications of the Adomian Decomposition Method 
4.1. Reliable Technique 

In this section, a reliable modification of the Adomian decomposition method de-
composition method developed by Wazwaz [13] will be reduced. The modified form 
was established based on the assumption that the function f can be divided into two 
parts namely 0f  and 1f . Under this assumption we set 0 1f f f= + . 

Based on this, the modified recursive relation is formulated as follows 

( ) ( )

( ) ( )

0 0

1 1
1 1 0 0

1 1
1

i i

i i             1
xx

xxn k k

u f

u f L u L A

u L u L A n

γ

γ

− −

− −
+

 =
 = + +


= + ≥

               (4.1) 

The choice of 0f  and 1f  such that ku  contains the minimal number of terms 
has a strong influence accelerates the convergence of the solution. The modification 
demonstrate a rapid convergence of the series solution if compared with standard 
(ADM) and it may give the exact solution for nonlinear equations by using two itera-
tions only without using the so-called Adomian polynomials. 

4.2. The New Modification 

In the new modification [22], Wazwaz replaced the process of dividing f into two com-
ponent by a series of infinite components, so f be expressed in Taylor series 
( ) 0n nf x f∞

== ∑ . Moreover, he suggests a new recursive relationship expressed in the 
form 

( ) ( )
0 0

1 1
1 i i    0

xxn n k k

u f

u f L u L A nγ− −
+

=
 = + + ≥

              (4.2) 

in this research, it is shown that if f consists of one term only, then scheme (4.1) reduc-
es to relation (3.7). Moreover, if f consists of two terms, then relation (4.2) reduces to 



A. Al-Shareef et al. 
 

2220 

the modified relation (4.1). 

5. Numerical Illustrations 
5.1. Example 1 

Consider the nonlinear cubic Schrodinger equation (NLS) which has the general form 
2

2
0 1 02i 0;  ,  ,u u q u u L x L t t

t x
∂ ∂

+ + = < < >
∂ ∂

                (5.1) 

where 0q ≥  is a real parameter and. In Equation (2.12) the function u governs the 
evolution of a weakly nonlinear, strongly dispersive, almost monochromatic wave. As-
suming initial condition of the form, 

( ) ( )0,u x t f x=                            (5.2) 

and boundary conditions 

( ) ( )0 1
0

, ,
0;   ,

u L t u L t
t t

x x
∂ ∂

= = ≥
∂ ∂

                    (5.3) 

the initial boundary value problem (IBVP) (5.1)-(5.3) gives rise to soliton solutions in 
which the solution and its derivatives with respect to x vanish as x →∞  [23] [24]. 
For the single-soliton case, when 0,q ≠  the function 

( ) ( )
1

12
22 1, exp sech ,

2
au x t i cx t a x ct

q
θ

     = − −           
            (5.4) 

where 2 4 ,c aθ = −  satisfies Equations (2.12)-(2.14). For fixed t the function u in Eq-
uation (5.4) decays exponentially as x →∞  and it represents a soliton-type distur-
bance which travels with speed c; its amplitude is governed by the real parameter a. 

1) Standard Adomian Decomposition Method 
Consider the initial condition 

( ) ( )
1

12
22 1,0 exp sech ,

2
au x i cx a x

q
     =            

               (5.6) 

Using standard ADM the solution of the NLS equation is given by the following ap-
proximation; 

( ) ( )

( )
( ) ( ) ( )( ) ( ) ( )( )

1
12
2

0

1

23

2 1, exp s ech ,
2

,

0.002828427i sech 0.1 cos 0.05 isin 0.05 cos 0.05 isin 0.05

au x t i cx a x
q

u x t

t x x x x x

     =            

= − +

 

The approximating Adomian decomposition method was tested to NLS equation for 
the single-soliton wave to the problems with boundary lines 0 80L = −  and 1 80L = − . 
In Figure 1 it is presented the modulus u  of the theoretical solution of NLS with q = 
1, a = 0.01 and velocity c = 0.1 for [ ]0,180t∈ , while in Figure 2 the corresponding 
approximate solution (SADM)|. Finally in Table 1 is listed the absolute error. 
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Figure 1. The graph of the exact solution for example 1. 
 

 
Figure 2. The graph of the approximate solution (SADM) for example 1. 
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2) Reliable Technique 
Now we assume that the function f can be divided into two parts namely 0 f  and 

1f . Under this assumption we set 

( ) ( )

( ) ( )

( )

1
12
2

0

1
12
2

1 0
0

1
0

2 1, cos sech ,
2

2 1, i sin sech i d
2

, i d ,    1

t

t

n n

au x t cx a x
q

au x t cx a x q A t
q

u x t q A t n+

    =         

    = +        

= ≥

∫

∫

 

In Table 2 various time step combinations are examined and compared with results 
given by exact solution. 

 
Table 1. The absolute error when x = 10. 

Standard ADM T 

0.0000703381 0.1 

0.000140626 0.2 

0.000210864 0.3 

0.000281052 0.4 

0.00035119 0.5 

0.000421277 0.6 

0.000491314 0.7 

0.0005613 0.8 

0.000631235 0.9 

0.00070112 1.0 

 
Table 2. The absolute error when x = 10. 

Reliable ADM T 

0.0000704382 0.1 

0.000140881 0.2 

0.000211328 0.3 

0.000281779 0.4 

0.000352234 0.5 

0.000422694 0.6 

0.000491314 0.7 

0.000563623 0.8 

0.000634093 0.9 

0.000704566 1.0 
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3) The New Modification 
In the new modification, the process of dividing f into two components is replaced 

by a series of infinite components. The recursive relationship expressed in the form 

( )

( )

( )

0

1 0
0

2
2

0

, 0.1414213,

, 0.00707106i i d

, 0.00088388 i d ,

t

t

n

u x t

u x t x q A t

u x t x q A t

=

= +

= +

∫

∫

 

Remark. When using the new modification for ADM the computations of the inte-
grals will be simpler but we need a large number of components to get accurate results, 
which may lead to accumulation of round of error. 

5.2. Example 2 

Consider the nonlinear Schrodinger equation (NLS) 
2

2
2i 2 0u u u u

t x
∂ ∂

+ + =
∂ ∂

                       (5.7) 

Subject to the initial condition of the form, 

( ,0) eixu x =                            (5.8) 

1) The Standard ADM 
So, we get the recurrent relation 

( )0 , eixu x t =  

( ) 1 1
1 , i 2i

xxk k ku x t L u L A− −
+ = +  

We can calculate few terms as 

( ) ( ) ( )1 1 1 1
1 0 0, i 2i e 2i e i e

xx

ix ix ixu x t L u L A L L t− − − −= + − + =  

( ) 1 1
2 1 1, i 2i

xx
u x t L u L A− −= +  

The solution is 

( ) 2 3
0 1 2 3

0

1 1, e i e e i e
2 3!

ix i ix ix

n

x
nu x t u u u u t t t

∞

=

= + + + = + − − +∑    

The behavior of the ADM solution obtained for different values of time is compared 
with the exact solution in Figure 3. It is to be noted that the exact solution of ( ),u x t  
was given as ( ) ( ), ei x tu x t += . 

In Table 3, the absolute errors in different time value are listed. 
Remark: As it seen from Figure 3, the numerical results of ADM are in very good 

agreement with their analytical values obtained from the exact solution. Moreover, 
from Figure 4 it can be seen that the error are somewhat small as the number of the 
components (n) in Adomian series is increasing. 

2) Reliable Technique 
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t = 0.1                                        t = 0.3                                       t = 0.5 

Figure 3. The graph of the exact solution and ADM solution at t = 0.1, t = 0.03 and t = 0.5. 
 

Table 3. The absolute error when t = 0.03, t = 0.1 and t = 0.5. 

x Absolute Error at t = 0.03 Absolute Error at t = 0.1 Absolute Error at t = 0.5 

0 3.370059347 × 10−8 0.0000041661332570 0.0025955039 

0.1 3.370059347 × 10−8 0.0000041660562770 0.0025955040 

0.2 3.381153649 × 10−8 0.0000041661206330 0.0025955039 

0.3 3.374685170 × 10−8 0.0000041660544070 0.0025955038 

0.4 3.377217790 × 10−8 0.0000041660937870 0.0025955040 

0.5 3.379127106 × 10−8 0.0000041661050360 0.0025955038 

0.6 3.370356064 × 10−8 0.0000041660713930 0.0025955040 

0.7 3.375440712 × 10−8 0.0000041660511770 0.0025955038 

0.8 3.373499667 × 10−8 0.0000041662206490 0.0025955036 

0.9 3.376684765 × 10−8 0.0000041661306230 0.0025955037 

1.0 3.370830758 × 10−8 0.0000041660782630 0.0025955036 

 

 
n = 1                                         n = 2                                        n = 3 

Figure 4. The graph of the exact solution and ADM solution at n = 1, n = 2 and n = 3. 
 

We set 

( ) ( )

( ) ( ) ( )

( ) ( )

0

1 0 0
0 0

1
0 0

, Cos

, iSin i d i d

, i d i d ,          1

t t

xx

t t

n n nxx

u x t x

u x t x u t q A t

u x t u t q A t n+

=

= + +

= + ≥

∫ ∫

∫ ∫
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In Table 4, various time step combinations are examined and compared with exact 
solution. 

The behavior of the Reliable ADM solution is compared with the exact solution in 
Figure 5. 

3) The New Modification 
To apply the new modification we replace f by a series of infinite components. Then, 

we can calculate few terms as 

0 0 1u f= =  

( )1
1 1 0 0i 2i i 2i .xxu f L u A x t−= + + = +  

( )
2

1 2
2 2 1 1i 2i 2 2 .

2xx
xu f L u A xt t−= + + = − − −  

( )
3

1 2 2 3
3 3 2 2

4i 2i i i i 2i i .
6 3xx
xu f L u A t x t xt t−= + + = − − − − −  

where 
2

2
0 1 21, i 2i 2 2 ,

2
xA A x tA xt t= = + = − − −   

The solution is 
2 3

2 2 2 34i 2i 2 2 i i i 2i i
2 6 3
x xu x t xt t t x t xt t= + − − − − − − − − +  

In Table 5, the absolute error in different time value is listed. 
In Figure 6, the behavior of the new modification solution obtained for different 

values of time: 
 
Table 4. The absolute error when x = 10. 

Reliable ADM T 

0.257913922 0.1 

0.0448678059 0.2 

0.0584708828 0.3 

0.0687497541 0.4 

0.079066386 0.5 

 

 
t = 0.1                                       t = 0.3                                       t = 0.5 

Figure 5. The graph of the exact solution and ADM solution at t = 0.1, t = 0.3 and t = 0.5. 
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Table 5. The absolute error when t = 0.03, t = 0.05 and t = 0.1. 

X Absolute Error at t = 0.03 Absolute Error at t = 0.05 Absolute Error at t = 0.1 

0 +0.0000225 +0.0001046 +0.0008482 

0.1 +0.0000241 +0.0001110 +0.0009063 

0.2 +0.0000311 +0.0001338 +0.0010460 

0.3 +0.0000471 +0.0001822 +0.0013000 

0.4 +0.0000746 +0.0002630 +0.0016955 

0.5 +0.0001173 +0.0003844 +0.0022619 

 

 
Figure 6. The graph of the exact solution and new modification solution at t = 0.03, t = 0.05 and t = 0.1 

6. The Improved Adomian Decomposition Method 
6.1. The Method 

In our new calculation, the complex system given in Equation (1) in converted into a 
real system by writing 

( ) 1 2, iu x t q q= +                             (6.1) 

where ( ), 1,2kq k =  are real functions. By substituting Equation (6.1) into Equation 
(2.1), we obtain the following system 

( )2 2
1 2 1 2 2 0t xxq q q q qγ  + + + =                         (6.2) 

( )2 2
2 1 1 2 1 0t xxq q q q qγ  − − + =                         (6.3) 

where ( ) ( ) ( ) ( )1 2,0 ,0 , ,0 ,0
R I

q x u x q x u x=   =       In an operator form, Equations (6.2) and 
(6.3) become 

( ) ( )2 2
1 2 1 2 2 0t xxL q q q q qγ  + + + =                       (6.4) 

( ) ( )2 2
2 1 1 2 1 0t xxL q q q q qγ  − − + =                       (6.5) 

Applying the inverse operator 1
tL−  to both sides of (6.4) and (6.5) gives 
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( ) ( ) 1 1
1 1 2 1, ,0 xxq x t q x L q L A− −= − −                       (6.6) 

( ) ( ) 1 1
2 2 1 2, ,0 xxq x t q x L q L A− −= + +                   (6.7) 

Assumes that, the nonlinear terms in (6.6) and (6.7) are represented by the following 
series 

( )2 2
1 1 2 2 2A q q q Sqγ = + =                        (6.8) 

( )2 2
2 1 2 1 1A q q q Sqγ = + =                        (6.9) 

1 2,A A  are Adomian polynomials. Substituting the nonlinear terms (6.8) and (6.9) 
and the solution form (6.4) and (6.3) into (6.6) and (6.7) gives 

( ) ( ) 1 1
1

0 0 0
1 2 1, ,0 ( ( , ))

n n
n xx n

n
q x t q x L q x t L A

∞ ∞ ∞

=

−

=

−

=

= − −∑ ∑ ∑           (6.10) 

( ) ( ) 1 1
2

0 0 0
2 1 2, ,0 ( ( , ))

n n
n xx n

n
q x t q x L q x t L A

∞ ∞ ∞

=

−

=

−

=

= + +∑ ∑ ∑          (6.11) 

Following the decomposition analysis, we introduce the recursive relative 

( ) ( )1,0 1, ,0q x t q x=                              (6.12) 

( ) ( )2,0 2, ,0q x t q x=                              (6.13) 

( ) ( )( )1 1
1, 1 2, 1,, ,k k mxx

q x t L q x t L A− −
+ = − −              (6.14) 

( ) ( )( )1 1
2, 1 1, 2,, ,k k mxx

q x t L q x t L A− −
+ = + +              (6.15) 

Adomian polynomials are calculated as follows 

( )( )2 2
1,0 1,0 2,0 2,0 .A q q qγ= +                                       (6.16) 

( )( ) ( )( )2 2
1,1 1,0 1,1 2,0 2,1 2,0 1,0 2,0 2,12 2 .A q q q q q q q qγ γ= + + +                (6.17) 

( )( ) ( )( )
( ) ( )( )

2 2
1,2 1,0 1,2 1,1 2,0 2,2 2,1 1,0 1,1 2,0 2,1

2 2 2 2
1,0 2,0 1 3,0 4,0 2,2

1 4 2 4 2 2
2

.

A q q q q q q q q q q

q q c q q q

γ γ

γ

= + + + + +

+ + + +
   (6.18) 

Similarly we can calculate 2,0A , 2,1,A  . Now, the first components from Equations 
(6.12)-(6.15) can be determined. Substituting these values into Equations (6.2) and (6.3), 
we can obtain the expression of 1q  and 2q , the closed form solutions yield from Equ-
ations (6.1). 

6.2. Test Problems 

The method is applied to the two above examples. 
1) Solution of Example 5.1 with IADM 
We consider Schrodinger Equation (5.7) with its initial condition. In our calculation 

we will convert the complex equation given in Equation (5.7) into a real system by 
writing 
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( )2 2
1 2 1 2 22 0t xxq q q q q+ + + =  

( )2 2
2 1 1 2 12 0t xxq q q q q− + + + =  

As we explain above we get 

( ) ( ) ( )1,0 1
2, ,0 Cos Sech

2
a cxq x t q x ax

q
 = =  
 

 

( ) ( ) ( )2,0 2
2, ,0 Sin Sech

2
a cxq x t q x ax

q
 = =  
 

 

( ) ( )

( )

2

1,1

22

1, Sech 4 2 Sech Sin
22 2

Sin 4 Cos Tanh 4 Sin Tanh
2 2 2

a cxq x t t ax a q ax
qq

cx cx cxq c ac ax a ax

     = − +       

       + + −              

 

( ) ( )
2

2,1

22

1, Sech 4 2 Cos Sech
22 2

   Cos 4 Sin Tanh 4 Cos Tanh
2 2 2

a cxq x t t ax a q ax
qq

cx cx cxq c ac ax a ax

     = − − +      

         + − −                

 

The numerical results obtained with IADM are presented in Table 6. 
In Figure 7, it is presented the modulus u  of the IADM solution of NLS with 

1,  0.01q a= =  and velocity 0.1c =  for [ ]0,180t∈ . 
2) Solution of Example 5.2 with IADM 
We consider following Schrodinger equation 

2i 2 0t xxu u u u+ + =                        (6.19) 

With initial and boundary condition ( ),0 eixu x = . This problem has an exact solu-
tion ( ) ( ), ei x tu x t +=  In our calculation, we will convert the complex equation given in 
Equation (6.19) into a real system by writing 

( )2 2
1 2 1 2 22 0t xxq q q q q+ + + =  

( )2 2
2 1 1 2 12 0t xxq q q q q− + + + =  

As is explained above, the iterative relation is obtained as 
 
Table 6. The absolute error when x = 10. 

Improve ADM T 

4.6052711 × 10−8 0.1 

1.8421550 × 10−7 0.2 

4.1449535 × 10−7 0.3 

7.3689919 × 10−7 0.4 

0.000001151433 0.5 
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Figure 7. The graph of the approximate solution (IADM) for example 1. 

 

( ) ( ) ( )1,0 1, ,0 cosq x t q x x= =                      (6.20) 

( ) ( ) ( )2,0 2, ,0 sinq x t q x x= =                      (6.21) 

( ) ( )1 1
1, 1 2, 1,, 2k t k t kxx

q x t L q L A− −
+ = − −                 (6.22) 

( ) ( )1 1
2, 1 1, 2,, 2k t k t kxx

q x t L q L A− −
+ = +                  (6.23) 

Adomian polynomials are calculated as follows 
2 3

1,0 1,0 2,0 2,0 .A q q q= +  

2 2
1,1 1,0 2,1 1,0 1,1 2,0 2,0 2,12 3 .A q q q q q q q= + +  

2 2 2 2
1,2 1,0 2,2 1,0 1,1 2,1 1,0 1,2 2,0 1,1 2,0 2,0 2,2 2,1 2,02 2 3 3 .A q q q q q q q q q q q q q q= + + + + +  

Similarly we can calculate 2,0A , 2,1A . Now, the first components can be determined. 

( ) ( ) ( )1,0 1, ,0 cosq x t q x x= =  

( ) ( ) ( )2,0 2, ,0 sinq x t q x x= =  

( ) ( )1,1 , Sinq x t t x= −  

( ) ( )2,1 , Cosq x t t x=  

( ) ( )2
1,2

1, Cos
2

q x t t x= −  

( ) ( )2
2,2

1, Sin
2

q x t t x= −  

The results are mentioned in Table 7 with only two components ( )2n = . 
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Table 7. The absolute error when x = 10. 

Improve ADM T 

1.6680003 × 10−7 0.1 

0.000005331568 0.2 

0.0000404691114 0.3 

0.0001704381222 0.4 

0.0005197377272 0.5 

7. Conclusion 

In this work, it is shown how the Adomian decomposition method and some of its 
modification can be adapted in order to be used to the nonlinear Schrodinger. The new 
method presented in this work has a powerful and easy use. The numerical technique is 
improved by decomposition of the nonlinear operator. In applying the improved Ado-
mian decomposition Method (IADM) to the nonlinear Schrodinger equation, it is 
found that the method gives accurate results with lesser computational effort as com-
pared with other modification. 
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