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Abstract 
Stock market networks commonly involve uncertainty, and the theory of soft sets 
emerges as a powerful tool to handle it. In this study, we present a soft analogue of 
the differential of a vibrational potential function acting on a stock market network 
as vibrational force. For this purpose, we first study the vibrational potential function 
operating on each vertex by using the Laplacian of the neighborhood graph, then ap-
plied the soft approximator for the soft sets where the data points are embedded to 
Euclidean n space. We used the data of the globally operating leading stock markets 
of 17 countries and presented the results respect to them. 
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1. Introduction 

Mathematical analysis of complex networks has become accepted since the more 
methodologies started to be used. The pioneering study is proposed by Mantegna in [1], 
and long has been attracted several researchers. Analyzing networks with statistically 
and mathematically methods lets us get the topological properties of a market and its 
core information. Given stock market model uncertainty; soft, fuzzy, and rough com- 
puting techniques are viable candidates to capture stock market nonlinear relations. 
Recently, artificial neural networks and support vector machines have been applied to 
solve the problems of predicting financial stock market prediction [2]-[4]. Besides, 
studies in combination of neural networks with rough sets are used to predict the 
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behavior of such stock markets [5] [6]. 
One of the strong mathematical tool to deal with uncertainty is Soft Set Theory 

which is introduced in [7]. By the arise of the theory its algebraic [8] [9] and topological 
[10] [11] properties, its relation with other theories [12]-[14], and also implicational 
feature of the theory [15]-[18] have been studied intensively. We refer [19] to the 
interested readers for soft set theoretical analogues of the basic set operations. 

In this study we first consider a financial network which is constructed from the 
correlation of daily logarithmic return of the closure price of globally leading 17 stock 
markets. As a common approach, this network is modelled as the tuple ( ),G V E=  
where the V is the set of vertices, that is the stock markets, and E is the set of edges or 
links in the network. G is considered as an undirected simple graph throughout the 
study. For basic operations and well-known concepts about the graph theory, we refer 
interested readers to [20]. It can also be seen that a soft set is not a set but set systems, 
hence there is a strong correspondence between the theories of Soft Sets and 
Hypergraphs. Henceforth, to apply soft set theoretical concepts to networks, we first 
obtain a hypergraph representation of the network by using k-neighborhood of a graph 
vertex. In Section 3, we explain this correspondence in details. Also, since each stock 
market is represented with time series we present a soft approximator in Section 3. This 
approximator can also be seen as the soft analogue of the subgradient. In Section 4, we 
present a new function called “vibrational potential energy” that operating on each 
vertex of the network. Any kind of local or global economic stress or crisis in a stock 
market directly affects its neighboring stock markets. Therefore, we defined our 
function respect to neighborhood graph Laplacian rather than the one that is 
introduced in [21]. Finally, in Section 5, we present the data and the algorithm to 
construct networks with respect to graph spectrum that is used to obtain results. In this 
section, the results can also be found in details. 

2. Preliminaries 

The tuple ( ),G V E=  is called an undirected graph for the the vertices or nodes set V 
and the edge or links set E. Each elements of E is an unordered pair of vertices that is 

( ),i je v v= . For any vertices ,i jv v V∈  the graph G is called connected if there is a 
path , i.e. a sequence of edges, whose end points are iv  and jv . The complete graph is 
an undirected graph with every pair of apart vertices is connected by an edge. In the 
case of real world data representation, each edge in E may be assigned by a non-- 
negative numerical value. This value is called as a weigh and for the mapping 

:w E +→  , the triple ( ), ,V E w  is called as a weighted graph. 
A common way to represent a graph is using a binary matrix whose elements are  

( ) ( )1, if ,
,

0, otherwise.
i j

G

v v E
A i j

 ∈= 


 

This matrix is called adjacency matrix and symmetric by the definition. This 
symmetry property concludes that the adjacency matrix has orthonormal basis of 
eigenvectors and the number of vertices many eigenvalues. 
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For a vertex v in an undirected graph G, the number of edges incident to that vertex 
is called degree and let us denote it by vd . For the graph ( ),G V E= , the Laplacian 
Matrix of G is the matrix whose entries are  

( ) ( )
, if

, 1, if , 1
0, otherwise.

iv

G G

d i j

L i j A i j

=


= − =



 

The graph Laplacian does not depend on an ordering of the vertices of G. Let us now 
denote the spectrum of GL  by { }1, ,G nS λ λ=   for the graph with V n= . The 
Laplacian is positive-semidefinite, i.e. all of its eigenvalues have 0iλ ≥  with the least 
one 0. For an undirected graph with nonnegative weights, the multiplicity k of the 
eigenvalue 0 of GL  equals the number of connected components 1, , kA A  in the 
graph [22]. 

Consider a graph ( ),G V E= . Now if 2V n= >  and there are 1n −  edges such 
that some one point, v, is directly connected or adjacent to all of the others, G is a 
n-star. A neighborhood graph, then, is any graph of n points that contains a n-star. The 
neighborhood graph of a given graph from a vertex v can also be seen as the subgraph 
induced by the neighborhood of a graph from vertex v [23]. 

3. Soft Analysis 

Classical analysis concepts may not be as powerful as the soft computing concepts to 
deal with real world data since the uncertainty. One of the powerful tool to deal with 
uncertainty is Soft Set Theory that is first introduced by Molodtsov in [7]. This theory 
differs from the theories of same kind like rough sets, vague sets, and fuzzy sets theories 
by the qualifying the parameters. 

Definition 3.1. Let A be a subset of E. A pair ( ),F A  is called a soft set over U 
where ( ):F A P U→  is a set-valued function.  

It is possible to conclude that a soft set over U is a parameterized family of subsets of 
the universe U. It is also common to consider a soft set as the approximate descriptions 
of an object [7] [19]. For a real valued function, the concept of soft approximation of a 
function is defined and studied deeply in [7]. However, we need an extended definition 
for the soft sets whose points are embedded in Euclidean n-dimensional space: 

Definition 3.2. Let E be n  and X E⊂  with an intrinsic metric. For every point 
x X∈ , ( )B xτ  is defined as an open ball centered to the point x with the radius τ . 
Let α  and β  be positive numbers. ( )y B xτ∀ ∈  the set  

( ) ( ) ( ) ( ) ( ){ }, , , | ,D f x v X f y f x v y xα β τ β α= ∈ ≥ + −  

is called ( ), ,α β τ -approximator of function : nf U ⊂ →   at the point x, where 

“ , ” is an inner product.  

The approximator given in Definition 3.2 can be seen as the three parameter 
approximator that is dealt in Non-differentiable Optimization. For more see [24]. It is 
also straightforward to show the basic properties such as linearity and convexity of the 
soft approximator. 
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From the mathematical point of view, a soft set is a set-valued function that maps 
parameters to the subset a universe. Frankly, similar mathematical settings such as 
Formal Concept Analysis [25], Spatial Analysis [26], and Hypergraphs [27] [28] have 
been studied extensively. A striking example is the concept of Hypergraphs. Hypergra- 
phs are the generalization of simple graphs in such way that an edge may include more 
than two vertices. When a hypergraph occurs as a set system one may correspond it as a 
soft set. 

For an illustrative example let us consider the hypergraph model given in Figure 1. 
The hypergraph that is given as a tuple ( ),H V E=  with the vertex set  

{ }1 2 3 4 5 6 7 8, , , , , , ,V v v v v v v v v=  

and the hyperedge set  

{ } { } { } { }{ }1 1 2 2 2 3 4 3 7 8 1 4 5 6, , , , , , , , ,E e v v e v v v e v v e v v v= = = = =  

naturally revokes the soft set { } ( )1 2 3 4: , , ,F A e e e e P V= →   

( ) { } { } { } { }{ }1 1 2 2 2 3 4 3 7 8 1 4 5 6, , , , , , , , , , .F A e v v e v v v e v v e v v v= = = = =  

4. Vibrational Potential 

Whenever a complex network is under consideration, some of the physical concepts 
can be helpful to analyze it. One of these concepts is called Vibrational Potential and 
can be interpreted by immersing the network into a thermal bath, then analyzing the 
displacement of a node from its equilibrium under the small perturbations in the 
network. The vibrational potential energy of the network can be given as  

( ) T

2
kV =x x xL  

where k is the spring constant, L  is the graph Laplacian, and x  is the vector whose 
i-th entry is the displacement ix . The vibrational potential of a network is studied 
deeply in [21]. 
 

 
Figure 1. A hypergraph example. 
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In this study we aim to investigate the change of the vibrational potentials under the 
soft approximators. Henceforth, the definition of a real valued function defined on the 
nodes of a network is needed. Let ( ),G V E=  be the simple undirected graph repre- 
sentation of a network under consideration with the node set V and the link set E. For a 
complex network such as stock market network, a thermal bath can be seen as the 
global economic crisis or local economic stress that effects the network. Henceforth, the 
assumption of the node in a financial network is mostly effected by its neighborhood 
markets do not contradict to the neoclassical theory of economics. By this assumption, 
we may express the vibrational potential energy of the node in the network as  

( ) T

2v v v
kV =x x xNL  

where k is the spring constant, NL  is the Laplacian of the neighborhood graph NG  of 
the node v in the network G, and vx  is the vector whose i-th entry is the displacement 

ix  in the neighborhood graph NG . 
The mean displacement of a node ix  in NG  can be expressed by  

( )2 di i v vx x P∆ = ∫ x x  

where ( )vP x  is the probability distribution  

( ) T1 exp
2v v v
kP

Z
β = − 

 
x x xNL  

with  

Td exp ,
2v v v
kZ β = − 

 ∫ x x xNL  

and β  is the inverse temperature. The mean square of the displacement of the i-th 
node can be given as  

( ) ( )2 2 d .i i v vx x P∆ = ∫ x x  

Using the unification methods that presented in [21] [29] the mean square of the 
displacement can also be computed as  

( )2 1 ,ix
kβ

+∆ = N
iiL  

where +N
iiL  is the Moore-Penrose generalised inverse of the neighborhood graph 

Laplacian NL . 

5. Experimental Verification 

As pointed out in Section 3, a hypergraph naturally yields a soft set. In this section we 
present a method to construct a soft set from a financial network and then consider the 
soft derivatives of the vibrational potentials acting on the nodes of the network that are 
globally operating stock markets and name after “soft vibrational force”. For a stock 
market network represented by a simple graph, k-neighborhood of vertices yields a 
cluster of vertex set. Henceforth, a hypergraph representation for stock market network 
can be obtained by k-neighborhoods. Since a crisis or stress mostly effect stock markets 
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that are mostly correlated, we use 1-neighborhood to obtain a soft set representation of 
the stock market. After we introduced the real valued vibrational potential function that 
operates on vertices separately in Section 4, the soft vibrational force on stock markets 
can be computed as  

( )( ) ( )1, , , ,vD V N xα βx  

where 1N  is the set of vertices in the 1-neighborhood of each stock market.  

5.1. Data 

The data we used in this study are obtained from the stock markets that operating in 
America, Europe, and Asia in the time scale from 02.01.2006 to 29.02.2016. Those stock 
markets are Holland (AEX), Austria (ATX), Turkey (BIST), France (CAC), Germany 
(DAX), USA (DOW, NASDAQ, SP500), European Union (EUSTOX), UK (FTSE), 
Mexica (IPC), South Korea (KOSPI), Argentina (MERVAL), Japan (NIKKEI), 
Switzerland (SMI), Israel (TELAVIV), and Taiwan (TSEC). 

For the daily closure price iP  of the i-th stock market, the daily logarithmic return 
is calculated as  

( )( ) ( )( )1log log log log .i i iCl P P+= −  

To catch optimized many links between the stocks, we use the Pearson correlation of 
each stock as  

( ) ( )222 2

i j i j
ij

i i j j

Cl Cl Cl Cl

Cl Cl Cl Cl
ρ

−
=

− −
 

where ..  is a temporal average performed on all the trading days of the investigated 
time period, 1 ,i j n≤ ≤  are the numerical labels of stocks, and 1 t m≤ ≤ . By the 
introduction of the distance function respect to correlation coefficients as  

( ): 2 1 2ijCorrDist ρ= − . Since 1 1ijρ− ≤ ≤ , 0 1CorrDist≤ ≤  for all iCl . The 
matrix D whose ( ),i j -th entry is ( ),CorrDist i j  is also called as correlation distance 
matrix of the network. The correlation distance matrix respect to aforementioned data 
set is given in Figure 2. As CorrDist  varies 0 to 1, the colour in the figure varies white 
to black, respectively. 
 

 
Figure 2. The monochromatic representation of the correlation distance matrix D. 
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5.2. Network Construction 

Respect to the correlation distance matrix, it is possible to construct the network as 
threshold distance sense. Since our analysis depends on connectedness of the network, 
we may use the spectrum of the simple graph representation to determine boundary to 
the threshold. The well-known theorem from spectral graph theory states that the 
multiplicity k of the eigenvalue 0 of the graph Laplacian equals the number of 
connected components in the graph. Our method to construct network first starts with 
n-complete graph; i.e., a graph with all vertices are adjacent. Then by subdividing [ ]0,1  
interval with h step, we determine the boundary as the greatest value where the 
correlation distance between each vertex is less and equal to and the graph remains 
with one component. The algorithm is given in Table 1 in pseudo-codes. 

5.3. Results 

Let us label vertices as the rule given in Table 2 throughout the study. 
 
Table 1. An Algorithm to determine the boundary for threshold distance. 

Input: 
D : n n×  type matrix 

h : fraction size 

Initial: 
G : n-complete graph with the GA  

0t ←  

 

while Number of 0 eigenvalue of 1GL =  do 

1t t← + ; TD t h←  
for 1i =  to 1n −  

for 1j i= +  to n  

if ( ),D i j TD≤  

then ( ) ( ), 1 and , 1G GA i j A j i← ←  

end if 
end for 

end for 
G  ← Graph with the GA  

Compute the Eigenvalues of  GL  

end while 

Output: Boundary for TD  

 
Table 2. Vertex labelling rule for the stock market network. 

1 AEX→  2 ATX→  3 BIST→  

4 CAC→  5 DAX→  6 DOW→  

7 EUSTOX→  8 FTSE→  9 IPC→  

10 KOSPI→  11 MERVAL→  12 NASDAQ→  

13 NIKKEI→  14 SMI→  15 500SP→  

16 TELAVIV→  17 TSEC→   
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For the 100h =  the boundary of the network to be connected is 0.86. The respected 
network is given in Figure 3. This network structure preserves really strong connections 
between the nodes. However, these kind of links do not accurately model the real world 
situation. For instance, in this network NASDAQ is only connected to TELAVIV. 
However, it is well known that USA stock markets are effective in stock market 
networks [30]-[32]. Hence, for our study we choose a more accurate network for the 
threshold distance 0.8 as in Figure 4. 

The 1-neighborhood of each node yields the following soft set for this network:  

( )

{ } { }
{ } { }
{ } { }
{ } { }
{ } { }
{ } { }
{ }

1 2

3 4

5 6

7 8

9 10

11 12

13 14

4,8,10,15 6,11,17
10,12,15,17 1,7,14
7,8,11,14,16 2,7,8,10,11,14,16
4,5,6,10,12,15 1,5,6,9,13

, 8,10,14,15 1,3,6,7,9,13
2,5,6,12,13 3,7,11,14,16
8,10,11,14,15,16,17

e e
e e
e e
e e

F A e e
e e
e e

= =
= =
= =
= =

= = =
= =
= { }
{ } { }
{ }

15 16

17

4,5,6,9,12,13
1,3,7,9,13 5,6,12,13
2,3,13

e e
e

 
 
 
 
 
 
 
 
 

= 
 = =
 = 

 

The neighborhood graphs of each elements of the soft set can be obtained by 
considering the network. In Figure 5 two of the examples of neighborhood graphs are 
presented. The left on is for BIST and the right one is for NASDAQ. 
 

 
Figure 3. The network with 0.86TD = . 

 

 
Figure 4. The network with 0.8TD = . 
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Figure 5. The neighborhood graphs of BIST and NASDAQ. 

 
Since our soft approximation definition relies on the intrinsic metric of the network 

and the nodes are the time series of the each stock markets daily logarithmic return, we 
compute the soft differential analogue of the vibrational potential function operating on 
each node as  

( )( ) ( ) ( ) ( ) ( ) ( ){ }1, , , , | , ,v v vD V N x u F A V V v y xα β β α= ⊂ ≥ + −x y x  

where the inner product arise from the standard correlation distance. 
For 5010α −= , 6010β −= , resulting soft vibrational force is:  

( )( ) ( ) { }1, , , , , ,vD V N AEX ATX BIST CAC EUSTOXα β =x  

( )( ) ( ) { }1, , , ,vD V N ATX AEX BISTα β =x  

( )( ) ( ) { }1, , , ,vD V N BIST ATX BISTα β =x  

( )( ) ( ) { }1, , , , ,vD V N CAC AEX ATX BISTα β =x  

( )( ) ( ) { }1, , , ,vD V N DAX AEX ATXα β =x  

( )( ) ( ) { }1, , , , ,vD V N DOW ATX BIST CACα β =x  

( )( ) ( ) { }1, , ,vD V N EUSTOX DOWα β =x  

( )( ) ( ) {}1, , ,vD V N FTSEα β =x  

( )( ) ( ) { }1, , , , , , ,vD V N IPC AEX ATX BIST CAC EUSTOXα β =x  

( )( ) ( ) { }1, , , , ,vD V N KOSPI AEX CAC DOWα β =x  

( )( ) ( ) { }1, , , , , , , ,vD V N MERVAL AEX ATX BIST CAC DAX EUSTOXα β =x  

( )( ) ( ) { }1, , ,vD V N NASDAQ ATXα β =x  

( )( ) ( ) { }1, , , , , ,vD V N NIKKEI AEX CAC DAX EUSTOXα β =x  

( )( ) ( ) { }1, , , , ,vD V N SMI ATX DAX DOWα β =x  

( )( ) ( ) {}1, , , 500vD V N SPα β =x  

( )( ) ( ) { }1, , , , , ,vD V N TELAVIV AEX ATX BIST CACα β =x  

( )( ) ( ) { }1, , ,vD V N TSEC ATXα β =x  
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and for 500010α −= , 600010β −= , resulting soft vibrational force is:  

( )( ) ( ) { }1, , , , , ,vD V N AEX ATX BIST CAC EUSTOXα β =x  

( )( ) ( ) { }1, , , ,vD V N ATX AEX BISTα β =x  

( )( ) ( ) { }1, , , ,vD V N BIST ATX BISTα β =x  

( )( ) ( ) { }1, , , , ,vD V N CAC AEX ATX BISTα β =x  

( )( ) ( ) { }1, , , ,vD V N DAX AEX ATXα β =x  

( )( ) ( ) { }1, , , , , ,vD V N DOW ATX BIST CAC DOWα β =x  

( )( ) ( ) { }1, , ,vD V N EUSTOX DOWα β =x  

( )( ) ( ) {}1, , ,vD V N FTSEα β =x  

( )( ) ( ) { }1, , , , , , ,vD V N IPC AEX ATX BIST CAC EUSTOXα β =x  

( )( ) ( ) { }1, , , , , ,vD V N KOSPI AEX BIST CAC DOWα β =x  

( )( ) ( ) { }1, , , , , , , ,vD V N MERVAL AEX ATX BIST CAC DAX EUSTOXα β =x  

( )( ) ( ) { }1, , ,vD V N NASDAQ ATXα β =x  

( )( ) ( ) { }1, , , , , , ,vD V N NIKKEI AEX ATX CAC DAX EUSTOXα β =x  

( )( ) ( ) { }1, , , , , ,vD V N SMI ATX BIST DAX DOWα β =x  

( )( ) ( ) {}1, , , 500vD V N SPα β =x  

( )( ) ( ) { }1, , , , , ,vD V N TELAVIV AEX ATX BIST CACα β =x  

( )( ) ( ) { }1, , ,vD V N TSEC ATXα β =x  

6. Conclusions 

Certain kinds of real world problems are hard to model by using only classical ideas. 
Hence, theories involving uncertainty, vagueness, or parameters such as soft set theory 
may be helpful to analyze these kinds of models. In this paper, we give a new soft 
approximation idea where each elements are described as a time series; i.e., embedded 
in n . Networks are usually modelled by simple graphs and involve an instinct metric. 
Therefore by introducing the soft set representation which arise from the hypergraph of 
a simple network respect to k-neighborhood, it is possible to use this soft approxima- 
tion on networks. Especially, we consider stock market networks in this study but it is 
also possible to extend this approach to other complex networks such as social 
networks, computer networks, biological networks etc. [33] [34]. To analyze soft analo- 
gue of the differential of a function acting on a network, we introduced vibrational 
potential function that is defined by the neighborhood graph of 1-neighborhood the 
vertices of the network under consideration. This function differs from the one that is 
given in [21] by using the Moore-Penrose inverse of the neighborhood graph. 
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The network we use in this study is constructed from the stock market’s daily 
logarithmic return of the closure price by a predetermined threshold distance and the 
correlation distance between each data. The upper boundary for the distance is 0.86, 
hence we used 0.8 to obtain more accurate results. By introducing the vibrational 
potential function operating on vertices, we analyzed the soft approximation of the 
function and softly-computed the vibrational force acting on the network. For the 
parameters 5010α −=  and 6010β −= , and 500010α −=  and 600010β −=  it can be 
concluded that a global economic crisis is mostly affect the small European economies 
such as Holland (AEX), Austria (ATX), and Turkey (BIST). The European Union Stock 
Market (EUSTOX) and DOW of USA are affected mostly from the leading global 
economies. 
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