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Abstract 
Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant 
of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given posi-
tive integer, , which is nearest to X in a certain matrix norm. The problem is first solved with re-
gard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the 
spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is 
based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and 
Mirsky minimum-norm theorem. 
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1. Introduction 
Let X  be a given real symmetric n n×  matrix. In this paper we consider the problem of finding a low-rank 
symmetric positive semidefinite matrix which is nearest to X  with regard to a certain matrix norm. Let ⋅  
be a given unitarily invariant matrix norm on n n× . (The basic features of such norms are explained in the next 
section.) Let   be a given positive integer such that 1 1n≤ ≤ −

, and define  

( ){ }, , 0, and rank ,n n
n S S S S+ ×= ∈ ≥ ≤


   

where the notation 0S ≥  means that S  is symmetric and positive semidefinite. Then the problem to solve has 
the form  

( )
,

minimize

subject to .n

F S X S

S +

= −

∈



                                 (1.1) 
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The need for solving such problems arises in certain matrix completion methods that consider Euclidean 
distance matrices, see [1] or [2]. Since X  is assumed to be a symmetric matrix, it has a spectral decom- 
position  

T ,X Q Q= Λ                                         (1.2) 

where T,n nQ Q Q I×∈ = , is an orthonormal matrix  

{ }1 2diag , , , nλ λ λΛ =   

is a diagonal matrix, and  

1 2 nλ λ λ≥ ≥ ≥  

are the eigenvalues of X  in decreasing order. If 0X ≥ , then 0nλ ≥  and the spectral decomposition (1.2) 
coincides with the SVD of X . In this case the solution of (1.1) is given by the Eckart-Young-Mirsky theorem. 
See the next section. 

The rest of the paper assumes, therefore, that 0nλ < . In this case the solution of (1.1) is related to that of the 
problem  

( )minimize

subject to ,n

F S X S

S +

= −

∈
                                (1.3) 

where  

{ }and 0 .n n
n S S S+ ×= ∈ ≥   

Let q  be a non-negative integer that counts the number of positive eigenvalues. That is   

0 for 1, , , and 0 for 1, , .j jj q j q nλ λ> = ≤ = +                       (1.4) 

Let the diagonal matrix qΛ  denotes the positive part of Λ ,   

{ }1diag , , ,0, ,0 .q qλ λΛ =                                   (1.5) 

(If 1 0λ ≤  then 0q = , and 0Λ  is the null matrix.) Then, as we shall see in Section 3, the matrix  
T

q q nX Q Q += Λ ∈  

solves (1.3) in any unitarily invariant norm. 
If q ≤   then, clearly, qX  is also a solution of (1.1). Hence in the rest of the paper we assume that 

1 q≤ < . This assumption implies that the diagonal matrix   

{ }1diag , , ,0, ,0λ λΛ =
 

                                  (1.6) 

belongs to ,n
+


 . The aim of the paper is to show that the matrix  
TX Q Q= Λ

 

 

solves (1.1) for any unitarily invariant norm. 
Let n nA ×∈  be a given real nn×  matrix. Then another related problem is  

( )minimize

subject to ,n

F S A S

S +

= −

∈
                                 (1.7) 

The relation between (1.7) and (1.3) is seen when using the Frobenius matrix norm. Let n nS ×∈  be a 
symmetric matrix and let n nT ×∈  be a skew-symmetric matrix. Then, clearly,  

2 2 2 .F F FS T S T+ = +                                        (1.8) 

Recall also that any matrix n nA ×∈  has a unique presentation as the sum A X Y= +  where  
( )T 2X A A= +  is symmetric and ( )T 2Y A A= −  is skew-symmetric. Consequently, for any symmetric 
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matrix, S  say, 
2 2 2 2 .F F F FA S X S Y X S Y− = − + = − +                               (1.9) 

Therefore, when using the Frobenius norm, a solution of (1.3) provides a solution of (1.7). This observation is 
due to Higham [3]. A matrix that solves (1.7) or (1.3) is called “positive approximant”. Similarly, the term 
“low-rank positive approximant” refers to a matrix that solves (1.1).  

The current interest in positive approximants was initiated in Halmos’ paper [4], which considers the solution 
of (1.7) in the spectral norm. Rogers and Ward [5] considered the solution of (1.7) in the Schatten-p norm, Ando 
[6] considered this problem in the trace norm, and Higham [3] considered the Frobenius norm. Halmos [4] has 
considered the positive approximant problem in a more general context of linear operators on a Hilbert space. 
Other positive approximants problems (in the operators context) are considered in [7]-[11]. The problems (1.1), 
(1.3) and (1.7) fall into the category of “matrix nearness problems”. Further examples of matrix (or operator) 
nearness problems are discussed in [12]-[18]. A review of this topic is given in Higham [19]. 

The plan of the paper is as follows. In the next section we introduce notations and tools which are needed for 
the coming discussions. In Section 3 we show that qX  solves (1.3). Section 4 considers the solution of (1.1) in 
Frobenius norm. This involves the Eckart-Young theorem. In the next sections Mirsky theorem extends the 
results to Schatten-p norms, the trace norm, and the spectral norm. Then it is proved that X



 solves (1.1) in 
any unitarily invariant norm. The proof of this claim requires a subtle combination of Ky Fan dominance 
theorem, a modified pinching principle, and Mirsky theorem. 

2. Notations and Tools 
In this section we introduce notations and facts which are needed for coming discussions. Here A  denotes a 
real m n×  matrix with m n≥ . Let 

TA USV=                                           (2.1) 
be an SVD of A , where [ ]1, , mU = u u  is an mm×  orthogonal matrix, [ ]1, , nV = v v  is an n n×  
orthogonal matrix, and { }1diag , , nS σ σ=   is an m n×  diagonal matrix. The singular values of A  are 
assumed to be nonnegative and sorted to satisfy   

1 2 0.nσ σ σ≥ ≥ ≥ ≥                                       (2.2) 

The columns of U  and V  are called left singular vectors and right singular vectors, respectively. These 
vectors are related by the equalities   

Tand , 1, , .j j j j j jA A j nσ σ= = = v u u v                          (2.3) 

A further consequence of (2.1) is the equality   

T

1
.

n

j j j
j

A σ
=

= ∑ u v                                         (2.4) 

Moreover, let r  denotes the rank of A . Then, clearly,   

1 0 and 0 for 1, , .r j j r nσ σ σ≥ ≥ > = = +                          (2.5) 

So (2.4) can be rewritten as 

T

1
.

r

j j j
j

A σ
=

= ∑ u v                                         (2.6) 

Let the matrices   

[ ] [ ]1 1, , and , ,m k n k
k k k kU V× ×= ∈ = ∈ u u v v                         (2.7) 

be constructed from the first k  columns of U  and V , respectively. Let { }1diag , ,k kS σ σ=   be a k k×  
diagonal matrix. Then the matrix   

T

1

k
T

k k k k j j j
j

T U S V σ
=

= = ∑ u v                                     (2.8) 
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is called a rank-k truncated SVD of A . (If 1k kσ σ +=  then this matrix is not unique.) 
Let , ,ij ij ija u v  denote the ( ),i j  entries of the matrices VUA ,, , respectively. Then (2.4) indicates that   

1
for 1, ,

n

ii j ij ij
j

a u v i nσ
=

= =∑                                  (2.9) 

and 

1 1 1 1 1 1
,

n n n n n n

ii j ij ij j ij ij j
i i j j i j

a u v u vσ σ σ
= = = = = =

≤ ⋅ = ⋅ ≤∑ ∑∑ ∑ ∑ ∑                       (2.10) 

where the last inequality follows from the Cauchy-Schwarz inequality and the fact that the columns of U  and 
V  have unit length. 

Another useful property regards the concepts of majorization and unitarily invariant norms. Recall that a 
matrix norm ⋅  on m n×  is called unitarily invariant if the equalities 

T TA X A AY X AY= = =                                 (2.11) 

are satisfied for any matrix m nA ×∈ , and any pair of unitary matrices m mX ×∈  and n nY ×∈ . Let B  and 
C  be a given pair of m n×  matrices with singular values  

1 2 1 20 and 0,n nβ β β γ γ γ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥   

respectively. Let ( )T
1, , nβ β= β  and ( )T

1, , nγ γ= γ  denote the corresponding n-vectors of singular 
values. Then the weak majorization relation ω<β γ  means that these vectors satisfy the inequality 

1 1
for 1, , .

k k

j j
j j

k nβ γ
= =

≤ =∑ ∑                                (2.12) 

In this case we say that β  is weakly majorized by γ , or that the singular values of B  are weakly majorized 
by those of C . The dominance theorem of Fan [20] [21] relates these two concepts. It says that if the singular 
values of B  are weakly majorized by those of C  then the inequality   

B C≤                                       (2.13) 

holds for any unitarily invariant norm. For detailed proof of this fact see, for example, [8], [20]-[23]. The most 
popular example of an unitarily invariant norm is, perhaps, the Frobenius matrix norm   

1 2
2

1 1
,

m n

ijF
i j

A a
= =

 
=  
 
∑∑                                  (2.14) 

which satisfies   

( ) ( )2 T T 2

1
trace trace .

n

jF
j

A A A AA σ
=

= = = ∑                        (2.15) 

Other examples are the Schatten p-norms,   
1

1
, 1

p
n

p
jp

j
A pσ

=

 
= ≤ < ∞ 
 
∑                             (2.16) 

and Ky Fan k-norms,   

( )
1

, 1, , .
k

jk
j

A k nσ
=

= =∑                               (2.17) 

The trace norm,   

tr
1

n

j
j

A σ
=

= ∑                                         (2.18) 

is obtained for k n=  and 1p = , while the spectral norm  
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1sp max jj
A σ σ= =                                     (2.19) 

corresponds to 1k =  and p = ∞ . The use of Ky Fan k-norms enables us to state the dominance principle in 
the following way.  

Theorem 1 (Ky Fan dominance theorem) The Inequality (2.13) holds for any unitarily invariant norm if 
and only if  

( ) ( ) for 1, , .k kB C k n≤ =                                 (2.20) 

Another useful tool is the following “rectangular” version of Cauchy interlacing theorem. For a proof of this 
result see ([24], p. 229) or ([25], p. 1250).  

Theorem 2 (A rectangular Cauchy interlace theorem) Let the m n×  matrix A  have the singular values 
(2.2). Let the m n×   matrix A  be a submatrix of A  which is obtained by deleting m′  rows and n′  
columns of A . That is, m m m′+ =  and n n n′+ = . Define { }min ,k m n=    and let  

1 2 0kσ σ σ≥ ≥ ≥ ≥


  
  

denote the singular values of A . Then 

for 1, , .j j m n j j kσ σ σ ′ ′+ +≥ ≥ = 


                             (2.21) 

To ease the coming discussions we return to square matrices. In the next assertions ( ) n n
ijW w ×= ∈  is an 

arbitrary real n n×  matrix. Combining the interlace theorem with the dominance theorem leads to the 
following corollary. 

Theorem 3 Let the n n×  matrix kB  be obtained from W  by setting to zero all the entries in the last 
n k−  rows and columns of W . Then the inequality   

kB W≤                                         (2.22) 

holds for any unitarily invariant norm.  
Theorem 4 Let the nn×  diagonal matrix  

( ) { }11diag diag , , ,nnW w w=   

be obtained from the diagonal entries of W . Then   

( )diag W W≤                                       (2.23) 

in any unitarily invariant norm.  
Proof. There is no loss of generality in assuming that the diagonal entries of W  are ordered such that  

11 22 .nnw w w≥ ≥ ≥  

Let the matrix kB  be defined as in Theorem 3. Then from (2.10) and (2.22) we conclude that  

( ) ( ) ( ) ( )diag for 1, , ,k kkk
W B W k n≤ ≤ = 

 

which proves (2.23).                                                                  
Corollary 5 The diagonal matrix  

( ) { }11diag diag , , ,0,0, ,0k kkB w w=    

satisfies   

( ) ( )diag diagkB W W≤ ≤                               (2.24) 

in any unitarily invariant norm.  
Lemma 6 Let X  and Y  be a pair of real symmetric n n×  matrices that satisfy  

0 .X Y≤ ≤  
Then  

X Y≤  
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in any unitarily invariant norm.  
Proof. Using the spectral decomposition of X  it is possible to assume that X  is a diagonal matrix:  

{ }1diag , , .nX λ λ=   

The matrix Y X−  is positive semidefinite and, therefore, has non-negative diagonal entries. This observation 
implies the inequalities  

for 1, , ,jj jy j nλ≥ =   

and  

{ } { } ( )1 11diag , , diag , , diag ,n nnX y y Yλ λ= ≤ =   

while (2.23) gives  

( )diag .Y Y≤
                               

  

Theorem 7 (The pinching principle) Let the matrix n nW ×∈  be partitioned in the form   

11 12

21 22

W W
W W
 
  
 

                                       (2.25) 

where 11
q qW ×∈  and ( ) ( )

22
n q n qW − × −∈ . Let the n n×  matrix   

11

22

0ˆ
0

W
W W

 
=   
 

                                     (2.26) 

denote the “pinched” version of W . Then the inequality   

Ŵ W≤                                         (2.27) 

holds in any unitarily invariant norm.  
Proof. Using the SVD of 11W  we obtain an pair of q q×  orthonormal matrices, 11U  and 11V , such that  

11 11 11
TU W V  is a diagonal matrix that contains the singular values of 11W . Similarly there exists a pair of 

( ) ( )n q n q− × −  orthonormal matrices, 22U  and 22V , such that T
22 22 22U W V  is a diagonal matrix that contains  

the singular values of 22W . The related n n×  matrices  

11 11

22 22

0 0
and0 0

U V
U VU V

   
= =      
   

 

are orthonormal matrices, and   
T
11 11 11T

T
22 22 22

ˆ U W V
U WV

U W V
 

=   
 

                               (2.28) 

is a diagonal matrix. Moreover, comparing TU WV  with T ˆU WV  shows that   

( )T Tˆ diag .U WV U WV=                                    (2.29) 

Hence a further use of (2.23) gives  

                        ( )T T Tˆ ˆ diag .W U WV U WV U WV W= = ≤ =
             

  

Equality (2.28) relates the singular values of Ŵ  with those of the matrices 11W  and 22W : Each singular value 
of 11W  is a singular value of Ŵ . Similarly, each singular value of 22W  is a singular value of Ŵ . Conversely, 
each singular value of Ŵ  is a singular value of 11W  or a singular value of 22W . The last observation enables 
us to sharpen the results in certain cases. This is illustrated in Lemmas 8-11 below, which seem to be new. We 
will use these lemmas in the proofs of Theorems 18-21.  
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Lemma 8 (Pinching in Schatten p-norms)   

11 22
ˆ .

pp p p
p p pp

W W W W≥ = +                              (2.30) 

Lemma 9 (Pinching in the trace norm)   

11 22tr tr trtr
ˆ .W W W W≥ = +                              (2.31) 

Lemma 10 (Pinching in the spectral norm)   

{ }11 22sp sp spsp
ˆ max , .W W W W≥ =                             (2.32) 

Lemma 11 (Pinching in Ky Fan k-norms) Let 1k  and 2k  be a pair of positive integers that satisfy  

1 21 and 1 .k q k n q≤ ≤ ≤ ≤ −  

Then 

( ) ( ) ( ) ( )1 2 1 21 2
11 22

ˆ .k k k kk k
W W W W

+ +
≥ ≥ +                          (2.33) 

Proof. The sum ( ) ( )1 211 22k kW W+  is formed from 1 2k k+  singular values of Ŵ , while the sum defined 

by 
( )1 2

ˆ
k k

W
+

 is composed from the 1 2k k+  largest singular values of Ŵ .                     

The next tools consider the problem of approximating one matrix by another matrix of lower rank. Let 
m nA ×∈  by a given matrix with SVD that satisfies (2.1)-(2.8). Let 1 k n≤ <  be a given integer, and let  

( ){ }and rankm n
k B B B k×= ∈ ≤   

denote the related set of low-rank matrices. Then here we seek a matrix B∈  that is nearest to A  in a 
certain matrix norm. The difficulty stems from the fact that k  is not a convex set. Let kT  denote a rank-k 
truncated SVD of A  as defined in (2.8). Then the Eckart-Young theorem [26] says that kT  solves this 
problem in the Frobenius norm. The extension of this result to any unitarily invariant norm is due to Mirsky [27]. 
(Recall that kT  is not always unique. In such cases the nearest matrix is not unique.) A detailed statement of 
these assertions is given below. For recent discussions and proofs see [25].  

Theorem 12 (Eckart-Young) The inequality  

2 2

1

n

jF
j k

A B σ
= +

− ≥ ∑  

holds for any matrix kB∈ . Moreover, the matrix kT  solves the problem  

( ) 2minimize

subject to ,
F

k

F B A B

B

= −

∈
 

giving the optimal value of  
2

2 T 2

1 1
.

n n

k j j j jF
j k j kF

A T σ σ
= + = +

− = =∑ ∑u v  

Theorem 13 (Mirsky) Let ⋅  be any unitarily invariant norm on m n× . Then the inequality  

kA B A T− ≥ −  

holds for any matrix kB∈ . In other words, the matrix kT  solves the problem  

( )minimize
subject to .k

B A B
B
µ = −

∈
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3. Positive Approximants of Symmetric Matrices 
In this section we consider the solution of problem (1.3). Since ⋅  is a unitarily invariant norm, the spectral 
decomposition (1.2) enables us to convert (1.3) into the simpler form  

( )minimize

subject to  ,     n

F S S

S +

= Λ −

∈
                                (3.1) 

whose solution provides a solution of (1.3).  
Theorem 14 Let the matrix qΛ  be defined as in (1.5). Then qΛ  solves (3.1) in any unitarily invariant 

norm.  
Proof. Let the diagonal matrix qD  be defined by the equality  

.q qDΛ + = Λ  

That is 

{ }1diag 0, ,0, , , .q q nD λ λ+=                                 (3.2) 

Let ( )ijS s=  be some matrix in n
+  and let the matrix ( ) n n

ijW w ×= ∈  be defined by the equality   
.W SΛ + =                             (3.3) 

Then the proof is concluded by showing that   

.qW D≥                                        (3.4) 

Let the diagonal matrix 

{ }1, 1diag 0, ,0, , ,q q q nnW w w+ +=                               (3.5) 

be obtained from the last n q−  diagonal entries of W . Then Corollary 5 implies that   

.qW W≥                                       (3.6) 

On the other hand, since 0S ≥ , the diagonal entries of S  are non-negative, which implies the inequalities 

for 1, , ,jj jw j q nλ≥ = +                               (3.7) 

and  

.q qW D≥                                      (3.8) 

Now combining (3.6) and (3.8) gives (3.4)                                                 
Theorem 14 is not new, e.g. ([8], p. 277) and [9]. However, the current proof is simple and short. In the next 

sections we extend these arguments to derive low-rank approximants. 

4. Low-Rank Positive Approximants in the Frobenius Norm 
In this section we consider the solution of problem (1.1) in the Frobenius norm. As before, the spectral decom- 
position (1.2) can be used to “diagonalize” the problem and the actual problem to solve has the form  

( ) 2

,

minimize

subject to .
F

n

F S S

S +

= Λ −

∈



                             (4.1) 

Theorem 15 Let the matrix Λ


 be defined as in (1.6). Then this matrix solves (4.1)  
Proof. Let the diagonal matrix D



 be defined by the equality  
.DΛ + = Λ

 

 

That is,   

{ }1 1diag 0, ,0, , , , , , ,q q nD λ λ λ λ+ += − −
 

                          (4.2) 
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and 

2 2 2

1 1
.

q n

j jF
j j q

D λ λ
= + = +

= +∑ ∑




                                  (4.3) 

Let ( )ijS s=  be some matrix in ,n
+


  and let the matrix ( ) n n
ijW w ×= ∈  be defined by the equality   

.W SΛ + =                                       (4.4) 
Then the proof is concluded by showing that   

2 2 .F FW D≥


                                    (4.5) 

This aim is achieved by considering a partition of W  and S  in the form   

11 12 11 12

21 22 21 22
and

W W S S
W SW W S S

   
= =      
   

                            (4.6) 

where 11W  and 11S  are q q×  matrices, while 22W  and 22S  are ( ) ( )n q n q− × −  matrices. Then, clearly,   
2 2 2

11 22 .F F FW W W≥ +                                   (4.7) 

Also, as before, since S  is a positive semidefinite matrix it has non-negative diagonal entries, which implies 
the inequalities   

for 1, ,jj jw j q nλ≥ = +                                   (4.8) 

and   
2 2 2

22
1 1

.
n n

jj jF
j q j q

W w λ
= + = +

≥ ≥∑ ∑                                   (4.9) 

It is left, therefore, to show that   
2 2

11
1

.
q

jF
j

W λ
= +

≥ ∑


                                    (4.10) 

Observe that the matrices 11W  and 11S  are related by the equality 

11 11 11W SΛ + =                                      (4.11) 

where 

{ }11 1diag , , q q
qλ λ ×Λ = ∈                                (4.12) 

and  

1 0.qλ λ≥ ≥ >                                    (4.13) 

Moreover, since 11S  is a principal submatrix of S , 

( ) ( )11rank rank .S S≤ ≤                                (4.14) 

Hence from the Eckart-Young theorem we obtain that 
2 2 2

11 11 11
1

.
q

jF F
j

W S λ
= +

= Λ − ≥ ∑


                           (4.15) 

Corollary 16 Let X  be a given real symmetric n n×  matrix with the spectral decomposition (1.2). Then 
the matrix  

TX Q Q= Λ
 

                                     (4.16) 

solves the problem  

( ) 2

,

minimize

subject to .
F

n

F S X S

S +

= −

∈



                              (4.17) 
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Corollary 17 Let n nA ×∈  be a given matrix, let the matrix ( )T 2X A A= +  have the spectral 
decomposition (1.2), and let the matrix X



 be defined in (4.16). Then X


 solves the problem  

( ) 2

,

minimize

subject to .
F

n

G S A S

S +

= −

∈



                            (4.18) 

5. Low-Rank Positive Approximants in the Schatten p-Norm 
Let the diagonal matrix Λ  be obtained from the spectral decomposition (1.2). In this section we consider the 
problem  

( )

,

minimize

subject to .

p
p

n

F S S

S +

= Λ −

∈



                              (5.1) 

Theorem 18 Let the matrix Λ


 be defined in (1.6). Then this matrix solves (5.1)  
Proof. Let the matrices ,D W



, and S  be defined as in the proof of Theorem 15. Then here it is necessary to 
prove that 

,p p
p pW D≥



                                    (5.2) 

where 

1 1
.

q n pp p
j jp

j j q
D λ λ

= + = +

= +∑ ∑




                             (5.3) 

Let W  and S  be partitioned as in (4.6). Then from Lemma 8 we have   

11 22 .p p p
p p pW W W≥ +                                 (5.4) 

Now Theorem 4 and (4.8) imply   

( )22 22
1 1

diag ,
n np ppp

jj jp p
j q j q

W W w λ
= + = +

≥ = ≥∑ ∑                          (5.5) 

while applying Mirsky theorem on (4.11)-(4.14) gives   

11 11 11
1

.
q

p p p
jp p

j
W S λ

= +

= Λ − ≥ ∑


                               (5.6) 

Finally substituting (5.5) and (5.6) into (5.4) gives (5.2).                                    

6. Low-Rank Positive Approximants in the Trace Norm 
Using the former notations, here we consider the problem 

( ) tr

,

minimize

subject to .n

F S S

S +

= Λ −

∈



                              (6.1) 

Theorem 19 The matrix Λ


 solves (6.1).  
Proof. It is needed to show that   

tr trW D≥


                                      (6.2) 

where 

tr
1 1

.
q n

j j
j j q

D λ λ
= + = +

= +∑ ∑




                                (6.3) 

The use of Lemma 9 yields   

11 22tr tr tr .W W W≥ +                                   (6.4) 



A. Dax 
 

 
182 

Here Theorem 4 and (4.8) imply the inequalities   

( )22 22tr tr
1 1

diag ,
n n

jj j
j q j q

W W w λ
= + = +

≥ = ≥∑ ∑                        (6.5) 

and Mirsky theorem gives   

11 11 11tr tr
1

,
q

n
j

W S λ
= +

= Λ − ≥ ∑


                               (6.6) 

which completes the proof.                                                            

7. Low-Rank Positive Approximants in the Spectral Norm 
In this case we consider the problem  

( ) sp

,

minimize

subject to .n

F S S

S +

= Λ −

∈



                                (7.1) 

Theorem 20 The matrix Λ


 solves (7.1).  
Proof. Following the former notations and arguments, here it is needed to show that  

sp sp .W D≥


 

Define  

1, , 1, ,
max and max .j jj q j q n

α λ β λ
= + = +

= =
  

 

Then, clearly,  

{ }sp 1, ,
max max , .jj n

D λ α β
= +

= =


 

 

Using Lemma 10 we see that  

{ }11 22sp sp spmax , .W W W≥  

Now Theorem 4 and (4.8) imply  

( )22 22sp sp 1, , 1, ,
diag max max ,jj jj q n j q n

W W w λ β
= + = +

≥ = ≥ =
 

 

while Mirsky theorem gives  

                           
11 11sp sp 1, ,

max .jj q
W S λ α

= +
= Λ − ≥ =

                     


 
 

8. Unitarily Invariant Norms 
Let the diagonal matrices Λ  and Λ



 be defined as in Section 1, and let ⋅  denote any unitarily invariant 
norm on n n× . Below we will show that Λ



 solves the problem  

( )
,

minimize

subject to .n

F S S

S +

= Λ −

∈



                               (8.1) 

The derivation of this result is based on the following assertion, which considers Ky Fan k -norms.  
Theorem 21 The matrix Λ



 solves the problem  

( ) ( )

,

minimize

subject to
k

n

F S S

S +

= Λ −

∈



                             (8.2) 

for 1, ,k n=  .  
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Proof. We have already proved that 


Λ  solves (8.2) for the spectral norm ( )1k =  and the trace norm 
( )k n= . Hence it is left to consider the case when 2 1k n≤ ≤ − . As before, the diagonal matrix D



 is defined 
in (4.2), and the matrices S  and W  satisfy (4.4) as well as the partition (4.6). With these notations at hand it 
is needed to show that   

( ) ( ) ,k kW D≥


                                     (8.3) 

Let D


 be partitioned in a similar way:   

11

22

0
,0

D
D D

 
=   
 



                                    (8.4) 

where 

{ }11 1diag 0, ,0, , , q q
qD λ λ ×

+= − − ∈


                             (8.5) 

and 

{ } ( ) ( )
22 1diag , , .n q n q

q nD λ λ − × −
+= ∈                             (8.6) 

Then there are three different cases to consider. 
The first case occurs when   

( ) ( )11 .k kD D=


                                   (8.7) 

Here Theorem 3 implies the inequalities   

( ) ( )11 ,k kW W≥                                     (8.8) 

while from (4.11)-(4.14) and Mirsky theorem we obtain   

( ) ( ) ( )11 11 ,k k kW D D≥ =


                               (8.9) 

which proves (8.3). 
The second case occurs when   

( ) ( )22 .k kD D=


                                  (8.10) 

Here Theorem 3 implies   

( ) ( )22 ,k kW W≥                                  (8.11) 

while Theorem 4 and the inequalities (4.8) give   

( ) ( ) ( ) ( ) ( )22 22 22diag ,k k kk
W W D D≥ ≥ =



                       (8.12) 

which proves (8.3). 
The third case occurs when neither (8.7) nor (8.10) hold. In this case there exist two positive integers, 1k  

and 2k , such that   

1 2k k k+ =                                      (8.13) 

and 

( ) ( ) ( )1 211 22 .k k kD D D= +


                              (8.14) 

Now Lemma 11 shows that   

( ) ( ) ( )1 211 22 .k k kW W W≥ +                              (8.15) 

A further use of (4.11)-(4.14) and Mirsky theorem give   

( ) ( )1 111 11 ,k kW D≥                                   (8.16) 
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and from Theorem 4 and (4.8) we obtain   

( ) ( ) ( ) ( )2 22
22 22 22diag .k kk

W W D≥ ≥                          (8.17) 

Hence by substituting (8.16) and (8.17) into (8.15) we get (8.3).                              
The fact that (8.3) holds for 1, ,k n=   means that the inequality   

W D≥


                                      (8.18) 

holds for any unitarily invariant norm. This observation is a direct consequence of Ky Fan dominance theorem. 
The last inequality proves our final results.  

Theorem 22 The matrix Λ


 solves (8.1) in any unitarily invariant norm.  
Theorem 23 Using the notations of Section 1, the matrix  

TX Q Q= Λ
 

 

solves (1.1) in any unitarily invariant norm.  

9. Concluding Remarks 
In view of Theorem 14 and Mirsky theorem, the observation that Λ



 solves (8.1) is not surprising. However, 
as we have seen, the proof of this assertion is not straightforward. A key argument in the proof is the inequality 
(8.15), which is based on Lemma 11. 

Once Theorem 22 is proved, it is possible to use this result to derive Theorems 15-18. Yet the direct proofs 
that we give clearly illustrate why these theorems work. In fact, the proof of Theorem 15 paves the way for the 
other proofs. Moreover, as Corollary 17 shows, when using the Frobenius norm we get stronger results: In this 
case we are able to compute a low-rank positive approximant of any matrix n nA ×∈ . 
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