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Abstract

Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant
of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given posi-
tive integer, £, which is nearest to X in a certain matrix norm. The problem is first solved with re-

gard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the
spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is
based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and
Mirsky minimum-norm theorem.
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1. Introduction

Let X be a given real symmetric nxn matrix. In this paper we consider the problem of finding a low-rank
symmetric positive semidefinite matrix which is nearest to X with regard to a certain matrix norm. Let ||||
be a given unitarily invariant matrix norm on R™" . (The basic features of such norms are explained in the next
section.) Let ¢ be a given positive integer such that 1< ¢ <n-1, and define

S, ={S[SeR™,$>0,and rank(s)< ¢},

where the notation S >0 meansthat S issymmetric and positive semidefinite. Then the problem to solve has
the form

minimize ~ F(S)=|X -§||

. (1.2)
subjectto  SeS;,.
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The need for solving such problems arises in certain matrix completion methods that consider Euclidean
distance matrices, see [1] or [2]. Since X is assumed to be a symmetric matrix, it has a spectral decom-
position

X =QAQ", (12)
where Q e R™, Q'Q =1, is an orthonormal matrix

A=diag{4,4,, -, 4}
is a diagonal matrix, and

W20y =2

are the eigenvalues of X in decreasing order. If X >0, then 4, >0 and the spectral decomposition (1.2)
coincides with the SVD of X . In this case the solution of (1.1) is given by the Eckart-Young-Mirsky theorem.
See the next section.

The rest of the paper assumes, therefore, that 4, <0 . In this case the solution of (1.1) is related to that of the
problem

minimize ~ F(S) :||X —S||

(1.3)
subjectto  SeS;,
where
S; ={S|S eR™ and S >0}.
Let g be anon-negative integer that counts the number of positive eigenvalues. That is
A;>0 for j=1--,q, and 4, <0 for j=q+1---,n. (1.4)
Let the diagonal matrix A, denotes the positive part of A,
Ay =diag{4,+,4,,0,-,0}. (15)

(If 4, <0 then q=0,and A, isthenull matrix.) Then, as we shall see in Section 3, the matrix
T +
X,=QA,Q" €5]
solves (1.3) in any unitarily invariant norm.

If q</{ then, clearly, X, is also a solution of (1.1). Hence in the rest of the paper we assume that
1< ¢ <q. This assumption implies that the diagonal matrix

A, =diag{4,---,4,,0,--,0} (1.6)
belongs to S, , . The aim of the paper is to show that the matrix

X, =QA,Q"

solves (1.1) for any unitarily invariant norm.

Let AeR™ beagivenreal nxn matrix. Then another related problem is
minimize ~ F(S)=|A-S]|
_ (1.7)
subjectto  SeS;,

The relation between (1.7) and (1.3) is seen when using the Frobenius matrix norm. Let SeR™ be a
symmetric matrix and let T e R™" be a skew-symmetric matrix. Then, clearly,
2 2 2
Is+TIE =[Sl +IT 1z (18)

Recall also that any matrix A< R™" has a unique presentation as the sum A= X +Y where
X :(AT+A)/2 is symmetric and Y = (AT —A)/Z is skew-symmetric. Consequently, for any symmetric
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matrix, S say,
[A=S]e =X =S +Y[J =[x =S[. +[V].- (1.9

Therefore, when using the Frobenius norm, a solution of (1.3) provides a solution of (1.7). This observation is
due to Higham [3]. A matrix that solves (1.7) or (1.3) is called “positive approximant”. Similarly, the term
“low-rank positive approximant” refers to a matrix that solves (1.1).

The current interest in positive approximants was initiated in Halmos’ paper [4], which considers the solution
of (1.7) in the spectral norm. Rogers and Ward [5] considered the solution of (1.7) in the Schatten-p norm, Ando
[6] considered this problem in the trace norm, and Higham [3] considered the Frobenius norm. Halmos [4] has
considered the positive approximant problem in a more general context of linear operators on a Hilbert space.
Other positive approximants problems (in the operators context) are considered in [7]-[11]. The problems (1.1),
(1.3) and (1.7) fall into the category of “matrix nearness problems”. Further examples of matrix (or operator)
nearness problems are discussed in [12]-[18]. A review of this topic is given in Higham [19].

The plan of the paper is as follows. In the next section we introduce notations and tools which are needed for
the coming discussions. In Section 3 we show that X, solves (1.3). Section 4 considers the solution of (1.1) in
Frobenius norm. This involves the Eckart-Young theorem. In the next sections Mirsky theorem extends the
results to Schatten-p norms, the trace norm, and the spectral norm. Then it is proved that X, solves (1.1) in
any unitarily invariant norm. The proof of this claim requires a subtle combination of Ky Fan dominance
theorem, a modified pinching principle, and Mirsky theorem.

2. Notations and Tools

In this section we introduce notations and facts which are needed for coming discussions. Here A denotes a
real mxn matrix with m>n. Let
A=USVT (2.1)

be an SVD of A, where U =[u,---,u,] is an mxm orthogonal matrix, V =[v,,---,v,] is an nxn
orthogonal matrix, and S =diag 0'1,-~~,0'n} is an mxn diagonal matrix. The singular values of A are
assumed to be nonnegative and sorted to satisfy

0,20,2--20,20. (2.2)

The columns of U and Vv are called left singular vectors and right singular vectors, respectively. These
vectors are related by the equalities

Av;=ou; and A'u;=o,v;, j=L--n. (2.3)
A further consequence of (2.1) is the equality
n
A= ZO'J-UJ-VJT. (2.4)
j=1
Moreover, let r denotes the rank of A . Then, clearly,
0, 2---20,>0 and o;=0 for j=r+1---,n. (2.5)
So (2.4) can be rewritten as
r
A=Y0ouvi. (2.6)
j=1
Let the matrices
U, =[u,-u ]JeR™ and V, =[v,, v, ]e R™ (2.7

be constructed from the first k columns of U and V , respectively. Let S, =diag{c,,":-,0,} be a kxk
diagonal matrix. Then the matrix

k
T =USV =Dou,v] (2.8)
=1
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is called a rank-k truncated SVD of A.(If o, =0,,, thenthis matrix is not unique.)

Let &;,u;,Vv; denote the (i,j) entries of the matrices A,U,V , respectively. Then (2.4) indicates that

a; =>ouv; fori=1--.n (2.9)
=i

and
n n n n n n
PIIEDNIAVIE ARSI VI AED Yot (2.10)
i=1 i=1lj=1 j=1 i=1 j=1

where the last inequality follows from the Cauchy-Schwarz inequality and the fact that the columns of U and
V have unit length.

Another useful property regards the concepts of majorization and unitarily invariant norms. Recall that a
matrix norm || on R™" is called unitarily invariant if the equalities

|A] =[x A| =[|AY]=|x"AY| (2.11)
are satisfied for any matrix A< R™", and any pair of unitary matrices X e R™™ and Y e R™".Let B and
C beagiven pair of mxn matrices with singular values

B=p,>2=28>20 and y,>y,>-->y, >0,

respectively. Let ,B:(,Bl,~--,,3n)T and y:(yl,---,;/n)T denote the corresponding n-vectors of singular
values. Then the weak majorization relation g <, y means that these vectors satisfy the inequality

k Kk
(<D, fork=1.-n (2.12)
=1 =i

In this case we say that £ is weakly majorized by y, or that the singular values of B are weakly majorized
by those of C . The dominance theorem of Fan [20] [21] relates these two concepts. It says that if the singular
values of B are weakly majorized by those of C then the inequality

Bl <lcl (213)

holds for any unitarily invariant norm. For detailed proof of this fact see, for example, [8], [20]-[23]. The most
popular example of an unitarily invariant norm is, perhaps, the Frobenius matrix norm

m n 1/2
W, =53] 21

which satisfies
| Al = trace( AT A) = trace( AAT ) = Zn:a . (2.15)

2
i
j=1

Other examples are the Schatten p-norms,

Al Z(JZH;GFJWI 1<p<ow (2.16)
and Ky Fan k-norms,
Ay, = 3o, K=1n @)
The trace norm,
A, =X, @19)

is obtained for k=n and p =1, while the spectral norm

()
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Al =01 =maxa, (2.19)

corresponds to k=1 and p=o. The use of Ky Fan k-norms enables us to state the dominance principle in
the following way.

Theorem 1 (Ky Fan dominance theorem) The Inequality (2.13) holds for any unitarily invariant norm if
and only if

[Bl,,, <llCl,, for k=1--n. (2.20)

Another useful tool is the following “rectangular” version of Cauchy interlacing theorem. For a proof of this
result see ([24], p. 229) or ([25], p. 1250).

Theorem 2 (A rectangular Cauchy interlace theorem) Let the mxn matrix A have the singular values
(2.2). Let the mxn matrix A be a submatrix of A which is obtained by deleting m’ rows and n’
columnsof A.Thatis, m+m'=m and fi+n’'=n.Define k= min{m,ﬁ} and let

6,26,2-26,20
denote the singular values of A . Then

0,26,>0, for j=1,---k. (2.21)

m'+n'+j

To ease the coming discussions we return to square matrices. In the next assertions W = (Wij eR™ is an
arbitrary real nxn matrix. Combining the interlace theorem with the dominance theorem leads to the
following corollary.

Theorem 3 Let the nxn matrix B, be obtained from W by setting to zero all the entries in the last
n—k rows and columns of W . Then the inequality

[B < w| (2.22)

holds for any unitarily invariant norm.
Theorem 4 Let the nxn diagonal matrix

diag(W ) = diag {w,,..., W, },
be obtained from the diagonal entries of W . Then
|diag (W] <[w|| (2.23)

in any unitarily invariant norm.

Proof. There is no loss of generality in assuming that the diagonal entries of W are ordered such that
Wiy | > Wy |2+ > |w

nn|'

Let the matrix B, be defined as in Theorem 3. Then from (2.10) and (2.22) we conclude that
||diag (W )"(k) < "Bk "(k) S "VV"(k) for k=1,---,n,
which proves (2.23). U
Corollary 5 The diagonal matrix
diag(B, ) = diag{w,;,"--, W,0,0,---,0}
satisfies
|eiag (B )] < |diag (W)] < ] (224)

in any unitarily invariant norm.
Lemma6Let X and Y bea pair of real symmetric nxn matrices that satisfy

0< X <Y.
Then
[X[<Iv]
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in any unitarily invariant norm.
Proof. Using the spectral decomposition of X it is possible to assume that X is a diagonal matrix:

X =diag{4, -, 4,}.

The matrix Y — X is positive semidefinite and, therefore, has non-negative diagonal entries. This observation
implies the inequalities

yj24; for j=1-.n,

and
"X":"diag{ﬂi"“'ln} S"diag{yn*“" ynn} =||diag(Y)||,

while (2.23) gives

|diag (V)] <[¥ ]| O

Theorem 7 (The pinching principle) Let the matrix W € R™" be partitioned in the form
Wll W12
2.25
(WZI WZZJ ( )

where W, e R™® and W,, e R"™ ™9 Letthe nxn matrix

. (W, | 0
W=(O Wﬂ] (2.26)

denote the “pinched” version of W . Then the inequality

W] < w] (2.27)

holds in any unitarily invariant norm.
Proof. Using the SVD of W,, we obtain an pair of qxq orthonormal matrices, U,, and V,,, such that

U;W,,V,, is a diagonal matrix that contains the singular values of W,,. Similarly there exists a pair of

(n—g)x(n—q) orthonormal matrices, U,, and V,,, such that U,,W,,V,, is a diagonal matrix that contains
the singular values of W,,. The related nxn matrices

u,| 0 V,| O
U:(o UZJ and Vz(o v,

are orthonormal matrices, and

:
U™WV = {U”W“V” | Uszszsz] (2.28)
is a diagonal matrix. Moreover, comparing U "WV with U™WV shows that
UTWV =diag(U™WV ). (2.29)
Hence a further use of (2.23) gives
I = Joviv | = aiag (0w ) < JuTwv | < w]. 0

Equality (2.28) relates the singular values of W  with those of the matrices W,, and W,, : Each singular value
of W,, isasingularvalue of W . Similarly, each singular value of W,, is a singular value of W . Conversely,
each singular value of W is a singular value of W,, or a singular value of W,,. The last observation enables
us to sharpen the results in certain cases. This is illustrated in Lemmas 8-11 below, which seem to be new. We
will use these lemmas in the proofs of Theorems 18-21.

()
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Lemma 8 (Pinching in Schatten p-norms)

W[y =M = s + W [ (230)

Lemma 9 (Pinching in the trace norm)

Wi, >

Lemma 10 (Pinching in the spectral norm)

WL, = ], =max (], Wl | e3)

Lemma 11 (Pinching in Ky Fan k-norms) Let k, and k, be a pair of positive integers that satisfy
1<k <q and 1<k,<n-q.

o = Ml + Wz (231)

Then
R

Proof. The sum |[VV11||(k1) + W, ||(k2) is formed from k, +k, singular values of W , while the sum defined

by W

The next tools consider the problem of approximating one matrix by another matrix of lower rank. Let
AeR™" by a given matrix with SVD that satisfies (2.1)-(2.8). Let 1<k <n be a given integer, and let

B, ={B[BeR™" and rank(B)<k|

(kg +ky) 2 "Wu"(kl) + "sz "(k2) . (2.33)

erha) is composed from the k, +k, largest singular values of W . O
1 +K2

denote the related set of low-rank matrices. Then here we seek a matrix BeB that is nearest to A in a
certain matrix norm. The difficulty stems from the fact that B, is not a convex set. Let T, denote a rank-k
truncated SVD of A as defined in (2.8). Then the Eckart-Young theorem [26] says that T, solves this
problem in the Frobenius norm. The extension of this result to any unitarily invariant norm is due to Mirsky [27].
(Recall that T, is not always unique. In such cases the nearest matrix is not unique.) A detailed statement of
these assertions is given below. For recent discussions and proofs see [25].

Theorem 12 (Eckart-Young) The inequality

n
[A-Bl = > of

j=k+1
holds for any matrix B € B, . Moreover, the matrix T, solves the problem
minimize ~ F(B)=|A- B||2F
subjectto B eB,,

giving the optimal value of

2
n n
It <) S| - Sai
j=k+1 E j=k+1
Theorem 13 (Mirsky) Let |-| be any unitarily invariant norm on R™" . Then the inequality
|A-B[=[A-T|

holds for any matrix B e B, . In other words, the matrix T, solves the problem
minimize  p(B)=||A-B]|
subjectto B eB,.
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3. Positive Approximants of Symmetric Matrices

In this section we consider the solution of problem (1.3). Since |||| is a unitarily invariant norm, the spectral
decomposition (1.2) enables us to convert (1.3) into the simpler form

minimize ~ F(S)=|A-S]|

3.1
subjectto  SeS, ,

whose solution provides a solution of (1.3).

Theorem 14 Let the matrix A, be defined as in (1.5). Then A, solves (3.1) in any unitarily invariant
norm.

Proof. Let the diagonal matrix D, be defined by the equality

A+D, =A,.
That is
D, =diag{0,+,0,[Ag,q .- |4} (32)
Let S=(s;) besome matrixin S; and let the matrix W =(w;)eR™" be defined by the equality
A+W =S. (3.3)
Then the proof is concluded by showing that
Wiz[o,| (34)
Let the diagonal matrix
W, =diag{0,-+,0,Wy,y g1, Wy | (3.5)

be obtained from the last n—q diagonal entries of W . Then Corollary 5 implies that
W)= | (36)
On the other hand, since S >0, the diagonal entries of S are non-negative, which implies the inequalities
w; 2|AJ| for j=q+1,---,n, (3.7

and

W,[ =[] (39)

Now combining (3.6) and (3.8) gives (3.4) [l
Theorem 14 is not new, e.g. ([8], p. 277) and [9]. However, the current proof is simple and short. In the next

sections we extend these arguments to derive low-rank approximants.

4. Low-Rank Positive Approximants in the Frobenius Norm

In this section we consider the solution of problem (1.1) in the Frobenius norm. As before, the spectral decom-
position (1.2) can be used to “diagonalize” the problem and the actual problem to solve has the form

minimize  F(S)= ||A - S||2F

(4.1)
subjectto  SeS§;,.
Theorem 15 Let the matrix A, be defined as in (1.6). Then this matrix solves (4.1)
Proof. Let the diagonal matrix D, be defined by the equality
A+D, =A,.
That is,
D, =cliag{o,---,o,—/z[,ﬂ,---,—ﬂq,|ﬂbq+l ,---,|/1n|}, (4.2)
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and
2 d 4
IO = 2047+ 247 (43)
j=0+1 j=q+1
Let S=(s;) besomematrixin S;, and letthe matrix W =(w; ) R™" be defined by the equality
A+W =S. (4.4
Then the proof is concluded by showing that
2 2
W[ =[] (45)
This aim is achieved by considering a partition of W and S in the form
Wll WlZ Sll SIZ
W = and S= (4.6)
[Wﬂ W22 SZl SZZ

where W,; and S are gxq matrices, while W,, and S,, are (n—q)x(n—q) matrices. Then, clearly,

W = Ml + W] @.7)

Also, as before, since S is a positive semidefinite matrix it has non-negative diagonal entries, which implies
the inequalities

Wjjz|/lj| for j=q+1,---,n (4.8)

and

Mol = 3T wj > Y 7. (4.9)

j=gq+1 j=gq+1

It is left, therefore, to show that

Ml = 327 (@10)
j=t+1
Observe that the matrices W,, and S,, are related by the equality
Ay +Wy =S, (4.12)
where
Ay =diag{ A, A, } e RY (4.12)
and
A z22,>0. (4.13)
Moreover, since S,, is a principal submatrix of S,
rank (S, ) < rank(S) <. (4.19)
Hence from the Eckart-Young theorem we obtain that
Mol = -Sull > 3247 0 @

Corollary 16 Let X be a given real symmetric nxn matrix with the spectral decomposition (1.2). Then
the matrix

X, =QA,Q" (4.16)
solves the problem

minimize  F(S)=|X -S|} (4.17)
subjectto  SeS;,. |
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Corollary 17 Let AeR™ be a given matrix, let the matrix X =(A+A")/2 have the spectral
decomposition (1.2), and let the matrix X, be defined in (4.16). Then X, solves the problem
minimize  G(S)=[A-S|’
subjectto  SeS;,.

5. Low-Rank Positive Approximants in the Schatten p-Norm

Let the diagonal matrix A be obtained from the spectral decomposition (1.2). In this section we consider the
problem
minimize  F(S)=[A-S|’
P (5.1)
subjectto  SeS,.

Theorem 18 Let the matrix A, be defined in (1.6). Then this matrix solves (5.1)
Proof. Let the matrices D,,W ,and S be defined as in the proof of Theorem 15. Then here it is necessary to
prove that

W =D, (5.2)
where
q n
ID, "E =2 A0+ |Aj|p' (5.3)
j=0+1 j=q+1

Let W and S be partitioned as in (4.6). Then from Lemma 8 we have

W, = W -+ Wz - (5.4)

Now Theorem 4 and (4.8) imply

W, "E 2 ||diag (W, )"Z = jZ:;l|WJJ|p 2 JZ:;I|’11|D’ (5.5)
while applying Mirsky theorem on (4.11)-(4.14) gives
M, = -Sull > 347 ©9)
Finally substituting (5.5) and (5.6) into (5.4) gives (5.2). Il

6. Low-Rank Positive Approximants in the Trace Norm

Using the former notations, here we consider the problem
minimize  F(S)=[A-S|,

. (6.1)
subjectto  SeS;,.
Theorem 19 The matrix A, solves (6.1).
Proof. It is needed to show that
Wi, =[o.], (62)
where
q n
D, = X 4|+ X |4l 6.3)
j=0+1 j=q+1

The use of Lemma 9 yields

W = Ml + o], - (6.4)
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Here Theorem 4 and (4.8) imply the inequalities
W, |, = diag (W,)],, = , |W |> 1|’11|' (6.5)
and Mirsky theorem gives

|M/11||tr = "An _811"1r = |’1 | (6.6)

j=l+

which completes the proof. O

7. Low-Rank Positive Approximants in the Spectral Norm
In this case we consider the problem

minimize F(S):"A_S"sp

(7.1)
subjectto  SeS,,.
Theorem 20 The matrix A, solves (7.1).
Proof. Following the former notations and arguments, here it is needed to show that
|NV "sp 2 ”D[ "sp '
Define
o= j:rﬂ???,q|ﬂj| and g = j:r(ﬂ?,?-(~,n /11.|.
Then, clearly,
"D/ "sp = j:r;q%),(_’n /1] | = maX{O,’,ﬂ}.
Using Lemma 10 we see that
"\N”sp 2 max {"\Nn"sp ’"\sz "sp}'
Now Theorem 4 and (4.8) imply
"\N22||sp 2 ”dlag (WZZ )"sp = j:m?,?»( n W“ > j rcn?x n 11| = ﬂ
while Mirsky theorem gives
"V\/11||5p :”A_Sll"sp j= [+1 q|’1 |_ =
8. Unitarily Invariant Norms
Let the diagonal matrices A and A, be defined as in Section 1, and let || || denote any unitarily invariant
normon R™". Below we will show that A, solvesthe problem
minimize S)=[A-5|
_ (8.1)
subject to S € S;'[.
The derivation of this result is based on the following assertion, which considers Ky Fan k -norms.
Theorem 21 The matrix A, solves the problem
minimize  F(S)=[A-S
I-sl, o

subjectto  SeS;,

for k=1,---,n



A. Dax

Proof. We have already proved that A, solves (8.2) for the spectral norm (k =1) and the trace norm
(k =n). Hence it is left to consider the case when 2<k <n-1. As before, the diagonal matrix D, is defined
in (4.2), and the matrices S and W satisfy (4.4) as well as the partition (4.6). With these notations at hand it
is needed to show that

Wy =] (83)
Let D, be partitioned in a similar way:
D, :[[;” DOZJ, (8.4)
where
Dy, =diag{0,-+,0,~4, 4+, 4, } € R (8.5)
and
D,, = diag {|4,.|,+- [ 4|} e R, (8.6)

Then there are three different cases to consider.
The first case occurs when

|D, "(k) =| Dll"(k)' 8.7)
Here Theorem 3 implies the inequalities
W Hy = Ml (88)

while from (4.11)-(4.14) and Mirsky theorem we obtain

"Wn”(k) = " D11||(k) - " D, "(k)’ (8.9)
which proves (8.3).
The second case occurs when
ID, "(k) =[D,, "(k)' (8.10)
Here Theorem 3 implies
Wy = Mzl (8.11)

while Theorem 4 and the inequalities (4.8) give
ozl = dliag (Wao )], = [1Dzz]l =[O0 (8.12)

which proves (8.3).
The third case occurs when neither (8.7) nor (8.10) hold. In this case there exist two positive integers, k;
and k,, such that

k +k, =k (8.13)
and
" D, "(k) = " Dll"(kl) +" DZ?”(kz)' (8.14)
Now Lemma 11 shows that
Wl = Wl + W, - (8.15)
A further use of (4.11)-(4.14) and Mirsky theorem give
"W11||(k1) 2| D11||(k1) , (8.16)
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and from Theorem 4 and (4.8) we obtain

W2, "(kz) > |diag (W, )"(kz) 2| D22||(k2) : (8.17)
Hence by substituting (8.16) and (8.17) into (8.15) we get (8.3). O
The fact that (8.3) holds for k =1,---,n means that the inequality
W[=o. (8.18)

holds for any unitarily invariant norm. This observation is a direct consequence of Ky Fan dominance theorem.
The last inequality proves our final results.

Theorem 22 The matrix A, solves (8.1) in any unitarily invariant norm.

Theorem 23 Using the notations of Section 1, the matrix

X, =QA,Q"

solves (1.1) in any unitarily invariant norm.

9. Concluding Remarks

In view of Theorem 14 and Mirsky theorem, the observation that A, solves (8.1) is not surprising. However,
as we have seen, the proof of this assertion is not straightforward. A key argument in the proof is the inequality
(8.15), which is based on Lemma 11.

Once Theorem 22 is proved, it is possible to use this result to derive Theorems 15-18. Yet the direct proofs
that we give clearly illustrate why these theorems work. In fact, the proof of Theorem 15 paves the way for the
other proofs. Moreover, as Corollary 17 shows, when using the Frobenius norm we get stronger results: In this
case we are able to compute a low-rank positive approximant of any matrix Ae R™".
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