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Abstract 
Hybrid model is a popular forecasting model in renewable energy related forecasting applications. 
Wind speed forecasting, as a common application, requires fast and accurate forecasting models. 
This paper introduces an Empirical Mode Decomposition (EMD) followed by a k Nearest Neighbor 
(kNN) hybrid model for wind speed forecasting. Two configurations of EMD-kNN are discussed in 
details: an EMD-kNN-P that applies kNN on each decomposed intrinsic mode function (IMF) and 
residue for separate modelling and forecasting followed by summation and an EMD-kNN-M that 
forms a feature vector set from all IMFs and residue followed by a single kNN modelling and fore-
casting. These two configurations are compared with the persistent model and the conventional 
kNN model on a wind speed time series dataset from Singapore. The results show that the two 
EMD-kNN hybrid models have good performance for longer term forecasting and EMD-kNN-M has 
better performance than EMD-kNN-P for shorter term forecasting. 
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1. Introduction 
Wind energy generated by wind turbines is a potential renewable energy for fossil energy complementary. 
However, wind energy is intermittent thus more difficult to be integrated to the grid than power generated by 
conventional generators. In order to utilize the wind energy, accurate forecasting is necessary so that the distri-
bution grid has a controllable demand-supply equilibrium [1]. 

The empirical relation between wind speed and wind power follows a non-linear function (3rd order) and so it 
prefers forecasting wind power generated by the wind turbine to the wind speed due to less accumulated error. 
However, wind speed data is usually easier to obtain even without the presence of the wind turbine, thus this 
paper will focus on wind speed forecasting. 

Wind speed time series (TS) is a one-dimensional vector that each value in the vector consists of a wind speed 
value and a time-stamp. Some statistical models such as Autoregressive Moving Average (ARMA) can be used 
for TS modelling and forecasting and was employed for wind speed/power TS forecasting [2]. However, ARMA 
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is a linear model but the nonlinear wind speed TS is not suitable for linear modelling. Some Computational In-
telligence (CI) based models were applied for wind speed/power TS forecasting [3], [4]. These CI based models 
were evaluated and compared with statistical models and the results showed that they usually outperform statis-
tical models. 

Hybrid models are developed by combining more than one model together. There are mainly four kinds of 
hybridization: (i) a linear forecasting model followed by a non-linear forecasting model such as ARMA-Neural 
Network (NN) [5]; (ii) an optimization tool to find the optimal parameters for the forecasting model such as 
Genetic Algorithm (GA)/Partial Swarm optimization (PSO)-Support Vector Regression (SVR) [6]; (iii) a de-
composition tool to decompose the TS into several sub-TS and different forecasting models to different sub-TS 
such as Wavelet-SVR [7] and Empirical Mode Decomposition (EMD)- NN [8] and (iv) a further combination of 
the previous three kinds such as Wavelet-PSO-Adaptive Neuro-Fuzzy Inference System (ANFIS) [9]. 

EMD is a non-linear and non-stationary TS decomposition tool [10]. It decomposes a TS into a collection of 
Intrinsic Mode Functions (IMFs) and one Residue. Each IMF or Residue reflects a certain characteristic of the 
original TS, which is less complex than the original TS. The details of EMD are described in Section II-A. 

In the literature, there are several hybrid models consisting EMD and statistical/CI based models such as 
EMD-SVR [11], EMD-NN [8] and EMD-MA-Persistent [12]. However, there are simpler models consisting 
EMD and k-Nearest Neighbor (kNN) for TS forecasting. The advantage if kNN is that it is simple, non-parame- 
tric and robust. 

In [13], an EMD-kNN model was reported for annual average rainfall forecasting. The EMD-kNN model was 
used to forecast two rainfall datasets in China and the performance was evaluated by three error measures. The 
results showed that the EMD-kNN model outperformed kNN model with respect to all three error measures for 
the two datasets. EMD-kNN model was also employed for financial TS forecasting [14]. Four stock TS were 
used for evaluation against kNN and ARMA models and the EMD-kNN model was the most accurate one. 

This paper applies two configurations of EMD-kNN models for wind speed forecasting: one is to construct 
feature vectors for each IMF or Residue and the other is to construct a feature vector set from all IMFs and Re-
sidue. The detailed configurations of the two EMD-kNN models are discussed in Section III. 

The remaining of the article is organized as follows: Section II introduces EMD and kNN. Section III dis-
cusses the two configurations of EMD-kNN models. Section IV evaluates the two models with a wind speed TS 
collected in Singapore and Section V concludes the paper and recommends for future work. 

2. Methodology 
In this section, EMD and kNN are introduced in details. 

2.1. Empirical Mode Decomposition 
EMD [10] decomposes non-linear and non-stationary complex TS into a finite number of TS known as IMFs 
and one residue. The IMF has a well behaved Hilbert transformation so that the instantaneous frequency of the 
IMF can be calculated and therefore it is able to locate any event on time and frequency domain with IMF [10]. 

The procedure of EMD (known as sifting) is as follows [10], [15]: 
1) Identify all local maxima and local minima in the TS x(t)  and interpolate all local maxima with an inter-

polationmethod such as cubic spline to form an upperenvelope maxe (t)  and use the similar interpolationmethod 
for all local minima to form a lower envelope mine (t) . 

2) Calculate the mean of upper and lower envelopes 

( )max mine t e (t)
m(t)

2
+

=  

3) Subtract m(t)from the original TS to obtain a detail component d(t) x(t) m(t)= − . 
4) Iterate on d(t)  for the previous three steps until the stopping criteria met. 
5) Iterate on m(t)  for the previous four steps for another IMF formation. 
The stopping criteria defined in [10] are: (i) in the whole TS, the number of zero-crossings and the number of 

extremamust equal or differ at most by one; and (ii) the mean value of the envelope must approach zero. 
However, it is difficult to implement the two above criteria in computing and therefore an additional quantita-

tive criterion is defined by Rilling [15]: 
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Define a mode amplitude ( ) ( )max mine t e (t)
a t

2
−

= , and define an evaluation function ( ) ( )
( )

m t
δ t

a t
= . The 

sifting iteration stops when ( ) 1δ t θ<  for (1 α)−  fraction of the total duration and 2δ(t) θ<  for α  fraction 
of the total duration. 

Where 1 2θ ,θ  and α  are user-defined thresholds. 
Finally, the original TS is decomposed as: 

( )
N

i N
i 1

x t IMF R
=

= +∑                                     (1) 

2.2. k Nearest Neighbor 
kNN is a method developed for both classification and regression. It is a kind of lazy learning [16]. The advan-
tage of kNN is that it is a non-parametric model and therefore it can be applied to wide range of applications 
[13]. 

The procedure of kNN for regression is as follows [13], [17]: 
1) Form d -dimensional feature vectors Dfrom the historicaldata x : t t 1 t d 1D {x , x , , x }− − += … ; Their corres-

ponding successors are denoted as hx . 
2) Form a n -dimensional distance vector iDIST  foreach testing vector iD  by calculating the Euclidean 

distance between iD  and the remaining D : i i jDIST {|| D D ||}, j i.= − ≠  
3) Sort iDIST  in ascending order and select the first K  entries as the nearest neighbors kD ,k {1,. . .,K}∈ . 

4) Form a kernel function ( ) K

j 1

1/ jK j
1/ j

=

=
∑

 as a weighted averaging factor for kNN aggregation. 

5) Calculate the final estimation as ( )kh h
jj 1x̂ K j x

=
= ∑ ．Where jx  is the corresponding successors of jD . 

In order to have a better generalization, kNN undergoes a leave-one-out cross validation during training to 
select the optimal kand d [17]. 

3. Two EMD-kNN Models 
In the previous section, the details of EMD and kNN are discussed. The advantage of kNN as a regression tools 
is also discussed. However, when the TS is non-stationary and nonlinear, there will be difficulties in feature 
vector formation, weighted aggregation and so on [13]. A hybrid model consisting EMD and kNN is then intro-
duced to overcome the drawbacks of kNN. 

This section discussed two configurations of EMD-kNN: (i) kNN modelling for each IMF and Residue and (ii) 
kNN modelling by constructing feature vectors from all IMFs and Residue. We denote the first configuration as 
EMD-kNN-Parallel (EMD-kNN-P) and the second configuration as EMD-kNN-Multiple-Features (EMD-kNN- 
M). The flowchart of the two configurations is shown in Figure 1. The details of the two configurations are dis-
cussed in the following subsections. 

3.1. EMD-kNN-P 
EMD-kNN-P applies kNN to each IMF and Residue. The mathematical representation is shown: 

h
i i i i iˆ ˆy x kNN(IMF ,K ,d )= =                               (1) 

h
R R R Rˆ ˆy x kNN(R, K ,d )= =                               )2(  

N
h

i R
i

ˆ ˆ ˆ ˆy x y y= = +∑                                  )3(  

where kNN(x,k,d) is a conventional kNN process described in Section II-B. 
The advantage of EMD-kNN-P is that we can use leave-one-out cross validation to select the optimal k and  
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Figure 1. Flow chart of the two EMD-kNN models: (a) EMD- 
kNN-P and (b) EMD-kNN-M. 

 
d for each IMF and Residue series but the disadvantage is that it requires more computing power as there are 
Ntimes more kNN executed for EMD-kNN-P than the conventional kNN. 

3.2. EMD-kNN-M 
EMD-kNN-M forms the feature vector by combining decomposed historical data. It is advantageous over the 
conventional kNN that the EMD-kNN-M’s feature vector contains more information and thus the distance 
measure is more resistance to non-linearity and non-stationarity. The mathematical representation is shown: 

{ }( )h
iˆ ˆy x kNN IMF ,R ,k,d , i {1, , N}= = ∈ …                            (5) 

Compared with EMD-kNN-P, there are less kNN processes in EMD-kNN-M. Compared with the convention-
al kNN, there is more information in the feature vectors. 

4. Results and Discussion 
The wind speed was recorded by an anemometer on top of an apartment building located at 78 Marine Dr., Sin-
gapore. The data was collected from May to Jun 2013 with 10 minute average. The dataset was split into five 
weekly datasets (WK17 to WK21) for evaluation. The beginning 70% was used for training and the remaining 
30% was used for testing. The 5 datasets were scaled to [0,1] interval. An example of the EMD decomposed TS 
for WK17 training set is shown in Figure 2. 

To evaluate the performance of the models, three error measures are used in the experiment: Root Mean 
Square Error (RMSE), symmetric Mean Absolute Percentage Error (sMAPE) and Mean Absolute Scaled Error 
(MASE): 

( )2ˆRMSE E[ y y ]= −                                   (6) 

ŷ y
sMAPE E 100%

ŷ y
 − 

= × + 
                              )7(  

n
j jj 1

n
i i 1i

ˆ| y y |
MASE

n | y y |
n 1

=

−

−
=

−
−

∑

∑
                              )8(  

where ŷ  is the predicted data, y  is the desired data and n  is the number of data points in the TS. 
As shown in Table 1, the error measures had an increasing trend with respect to forecasting horizons for the 

persistent model but the trend is not consistent increasing for kNN, EMD-kNN-P or EMD-kNN-M. The RMSE,  
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Figure 2. An Example IMFs (first 5 TS) and Residue (last TS) of WK17 Training Set after EMD. 
 
Table 1. Comparison of different models on RMSE, sMAPE and MASE for 1, 3, 5, 7 and 9 steps ahead forecasting. 

 
 
sMAPE and MASE plots with respect to forecasting horizon for the persistent model, the kNN, the EMD- 
kNN-M and the EMD-kNN-P on the five datasets are shown in Figures 3-5. 

Compared with the persistent model, kNN, EMD-kNN-P and EMD-kNN-M had higher error measures for 1 
and 3 step-ahead forecasting in most of the cases but the error measure of kNN, EMD-kNN-P and EMD-kNN-M 
became smaller than the persistent model for 7 and 9 step-ahead forecasting. We can infer that kNN, EMD- 
kNN-P and EMD-kNN-M have better performance than the persistent model for longer term forecasting. 

kNN had smaller error measures than EMD-kNN-P but larger error measures than EMD-kNN-M for 1, 3 and 
5 step-ahead forecasting in most of the cases. For 7 and 9 step-ahead forecasting, kNN had larger error measures 
than EMD-kNN-M and EMD-kNN-P. 

The error measures for EMD-kNN-M for 1 and 3 step-ahead forecasting were smaller than that for EMD- 
kNN-P in most of the cases but the error measures for EMD-kNN-M for 5, 7 and 9 step-ahead forecasting were 
larger than that for EMD-kNN-P. Therefore we can conclude that EMD-kNN-P is the best model for longer term 
forecasting among the four models. EMD-kNN-M has advantage in shorter term and mid-term forecasting. 

5. Conclusion and Future Work 
This paper has described two configurations of EMD based kNN models for wind speed forecasting. The first 
configuration has applied kNN on each IMF and residue and has aggregated the predicted values to form a final 



Y. Ren, P. N. Suganthan 
 

 
181 

 
Figure 3. RMSE v.s. Horizon Plots for WK17, WK18, WK19, WK20 and WK21 datasets. 
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Figure 4. sMAPEv.s. Horizon Plots for WK17, WK18, WK19, WK20 and WK21 datasets. 
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Figure 5. MASE v.s. Horizon Plots for WK17, WK18, WK19, WK20 and WK21 datasets. 
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prediction. The second configuration has combined all IMFs and residue together to form a feature vector set for 
computing the distance matrix and the prediction has followed the conventional kNN model. The two configura-
tions have been compared with the persistent model and the kNN model with a wind speed TS recorded in Sin-
gapore. The results have shown that the two configurations outperformed the persistent model and kNN for 
longer term forecasting. The second configuration has outperformed the first configuration for 1 and 3 step- 
ahead forecasting. 

For future work, a possible improvement is on the feature vector selection. Some statistical methods can be 
applied for the dimension selection instead of user-defined range followed by grid search based on cross valida-
tion performances. Another possible future work is to apply different weight scheme w to the distance matrix 
creation stage. Instead of a uniform w, a linear or exponential decayed w can be used to weigh the distance. This 
weighted distance may improve the selection of nearest neighbors.  
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