
Journal of Mathematical Finance, 2014, 4, 55-74 
Published Online February 2014 (http://www.scirp.org/journal/jmf) 
http://dx.doi.org/10.4236/jmf.2014.42006  

Optimal Investment Strategy for Kinked Utility 
Maximization: Covered Call Option Strategy 

Miwaka Yamashita 
BlackRock Japan Co., Ltd., Tokyo, Japan 

Email: Miwaka.yamashita@blackrock.com  
 

Received October 20, 2013; revised November 29, 2013; accepted December 30, 2013 
 

Copyright © 2014 Miwaka Yamashita. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor-
dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual 
property Miwaka Yamashita. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. 

Abstract 
This paper describes optimal investment strategies for kinked utility functions. One example is a CRRA utility 
function with a kink at a maximum wealth, which leads a covered call “like” strategy and the other is a CRRA 
utility function with a kink at a minimum wealth, which leads a protective put “like” strategy. This paper intro-
duces analytic mathematical solutions providing a mathematical explanation of a dual utility where Black-Sholes 
assumption is utilized in the solutions. The intuitive solutions are clear for cases of those kinked utilities but 
minute mathematical explanation is described. Also a numerical simulation is performed for a covered call like 
strategy case. 
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1. Introduction 
The modelling of problems to maximize the expected utility of end-of-period wealth by allocating wealth be-
tween a risky security and a riskless security over some investment horizon is popular among academic circles 
and investment practitioners. CRRA utility maximization investment strategy problems [1-5] are typical ex-
amples. 

One of the ways of finding an optimal investment strategy to such a utility maximization problem is to set up 
the problem with a value function and Hamilton-Jacobi-Bellman (HJB) equation. However, an important condi-
tion required to use this method is that the utility function must be twice differentiable. 

Recently, kinked utility maximization has been suggested as an important problem to solve. (Basic papers in-
clude [6] and examples include [7].) In these papers, corporate pension fund investment strategy problems are 
presented. In such cases the goal is to maximize the expected utility of end-of-period wealth by allocating 
wealth between a risky and riskless asset under a set of constraints. In the case of [7], the funding ratio (the ratio 
of total pension asset to total pension liabilities) has lower and upper limits. In this paper, these are shown to be 
identical with the followings. One case is that the utility function is CRRA with a kink at a minimum level of 
wealth. At the minimum level, the utility function goes to minus infinite. The other case is that the utility func-
tion is CRRA with a kink at a target wealth level. When the wealth is equal or larger than the target wealth level, 
the utility function becomes flat. [7]’s funding ratio conditions match to these utility function constraints. [6] 
examined that there exists a smooth classical solution to the HJB for a large class of constrained problems with 
utility functions that are not necessarily differentiable or strictly concave, and mathematical minutes are de-
scribed based on the problem and the results match with [7]. 

This paper mainly treats the target wealth level case. The optimal investment strategy is to use a covered call 
option strategy as described in this paper. The other case is well researched and results in a protective put option 
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strategy. Back to 1980’s, there were also discussions about if a protective put option strategy or a portfolio in-
surance strategy is an optimal strategy or not. [8,9] discussed about one period buying put option strategy with 
Black-Sholes assumption. [8] found that optimality ends to that the utility function is linear to the portfolio value 
and risk premium is zero. [10] found that buying put option and holding strategy is only optimal when no risk 
free assets exist. [11,12] solved what might be called inverse problem and examined about that given any spe-
cific dynamic strategy, can we determine whether it is self-financing, yields path-independent returns, and is 
consistent with optimal behaviour for some expected utility maximizing investor. [13]’s continuous time dy-
namic put option overlay strategy can be optimal under certain utilities and assumptions. I will also address the 
relationship of this paper and those discussions. 

This paper consists of the following Sections. In Section 2, I set up the problem. In Section 3, I provide the 
details of the mathematical procedure and present the analytic solutions. In Section 4, I provide a numerical si-
mulation example of one of the strategies presented in Section 3. In Section 5, I address about optimality discus-
sions of option strategies. Session 6 discusses the summary and related discussions. 

2. Problem Setting 
2.1. The Maximization Problem 

An investor’s objective is to maximize the expected utility of end-of-period (time t = T) wealth t Tw =  by allo-
cating his wealth tw  between two assets, a risky security (Risky Asset) and a riskless security (Risk Free As-
set), over some investment horizon [0,T], which is called a strategy and expressed by the risky asset weight tϕ . 
Risky Asset’s characteristics are determined by its price S under geometric Brownian motion with drift and 
volatility. Using utility function ( )tU w , the problem is as follows. 

( )
t

TSup E U w
ϕ

                                          (1) 

2.2. Merton Utility Function and a Utility Function with Kinks 
A constant relative risk aversion utility function was used in [1], henceforth “The Merton Model”: 

( )
1

0
1

1
t

t
wU w U

γ

γ

− −
= ×

−
                                  (2) 

If 1γ = , we set logarithm function. Figure 1 depicts CRRA utility functions with 0 1U = , 0.8γ = , and 1.6.  
Figure 2 and Figure 3 depict the utility functions to be used in this paper. As results, Figure 2 leads to a 

protective put option “like” investment strategy (minimum asset level “M”) and Figure 3 leads to a covered call 
option “like” investment strategy. The interpretation of the Figure 3 utility function is that once the pension  
 

 
Figure 1. Utility γ = 0.8 (real line), 1.6 (dot line). (The shape of the utility function. w is Asset Value. U is utility func-
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Figure 2. An illustration of the utility function U(w) with the kink at w = M. (U is the utility function and w is the asset 
value. The utility’s value goes to −∞ when w approaches the minimum asset value level “M”.) w0: initial value of w, M: 
minimum level, L: target level. 
 

 
Figure 3. An illustration of the utility function U(w) with the kink at w = L. (U is the utility function and w is the asset 
value. “L” is the target level of the asset value and the utility becomes flat for w > L and w = L.). w0: initial value of w, 
M: minimum level, L: target level. 
 
asset value achieves “L” (indicating its liability level) from under-funding status, the utility will not increase 
even if the asset value increases. In other words, achieving the full-funding level is the first priority and after 
that is satisfied, wealth no longer needs to be increased. 

In this paper, the mathematical formation of the utility function is described by using both kinks at the mini-
mum wealth level and the target wealth level. This is, however, not saying that the constraints are simultane-
ously effective. The case of both constraints is presented in the Appendix A. 

2.3. Problem Setting 
An objective is set to maximize the expected utility (denoting U) of end-of-period wealth Tw  by allocating 
wealth tw  between two assets, a risky security (Risky Asset) and a riskless security (Risk Free Asset) over 
some investment horizon [0,T], which is called a strategy and expressed by the risky asset weight tϕ . tw  does 
not become 0 nor negative. Others are as follows. 
• The portfolio is managed by a strategy process tX  and it consists of investing in Risky Asset and Risk Free 

Asset. 
• The asset amount, tw , consists of the portfolio assets and derivatives (options) if any. 
• Risky Asset’s characteristic is set as its price S under geometric Brownian motion with drift and volatility. 

Brownian motion tB  is on a complete filtered probability space ( )( ), , ,tF F PΩ  with initial value almost 
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surely. Filtration tF  is all time t available information for the pension fund. Setting a finite time T, ( )0t t T
F

≤ ≤
 

satisfies the usual conditions and the augmented sigma-field generated by tB  up to time t. In general expres-
sion, the process X  is a controlled state process valued in R  and satisfying: 

( ) ( )d , , d , , ds s s s s sX b s X s s X Bα σ α= + .                          (3) 

The decision of the risky asset weight tϕ  is the control. (See Appendix B.) Generally, the control is set as 
( )0s s T

α α
≤ ≤

= , and it is a progressively measurable process valued in the control set A, a subset of R . The Borel 
function b and σ  on [ ]0,T R A× ×  satisfy the usual conditions in order to ensure the existence of a strong so-
lution to the above stochastic process. This is typically satisfied when b and σ  satisfy a Lipschitz condition on 
(t, x) uniformly in A, and α  satisfies a square integrability condition. 

In this paper, Risky Asset’s characteristics is set as its price S is under geometric Brownian motion with drift 
Sµ  and volatility S

tBσ , and Risk Free Asset’s interest rate is supposed to be fixed as fr . 

d d d , , and const.f S S S f
t t t tS S t S B rµ σ µ σ= + =                    (4) 

( )d d dS f f S
t t t t tX X r r t X Bϕ µ σ = − + +                          (5) 

Regarding Risky Asset, P-measure of d tS  and its Equivalent Martingale Measure Q-measure are assumed to 
exist. We analyse the following stochastic process: 

ˆd d df S
t t tS S r t S Bσ= +                                        (6) 

B̂  is defined by 
S f

S
rµθ

σ
−

=  and ˆd d dB B tθ= + .               (7) 

The utility functions treated in this paper are shown in mathematical form below. Setting the CRRA utility 
maximization problem as follows, we denote two features of the utility function: There are kinks at the mini-
mum level (M) and at target level (L) of asset wealth. M is for modeling of a minimum solvency level, and L is 
liability, which should be constant. (See Figure 2 and Figure 3.) 

Mathematical expression is as follows: 

( ),

t

M L
TSup E U w

φ
                                             (8) 

( )

( )

( )

( ) ( )

1
,

,

if 0

1 if
1

if

M L t

M L

x M

wU x M x L

U L L x

γ

γ

−

−∞ < ≤


−= < <
−

 ≤

                           (9) 

(Risk averseness γ  is set constant.) 
Subject to: 

( ) [ ]0 ,0 e
fr T

Q TV w E w−=                                     (10) 

( ) ( ), ,M L M L
P TE U w U M  >                                   (11) 

( ) ( ), ,M L M L
P TE U w U L  <                                    (12) 

P: Market measure. Q: Risk neutral measure. 
For the convenience, ( )STDU x  is defined. (Merton model) 

( ) ( )
1 1 0
1

STD twU x x
γ

γ

− −
= < < −∞

−
                             (13) 

Again, the mathematical formation of the utility function is described by using both kinks at the minimum 
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wealth level and the target wealth level. This is, however, not saying that the constraints are simultaneously ef-
fective. 

3. The Solution Procedure 
3.1. Dual Utility 

Here we define the conjugate value function of ( )u x  as ( )u y  for utility and its dual utility function of ,U U  
such that: 

( ) ( )P
x

u x Sup E U x=                                        (14) 

( ) ( ) , 0
y

U y Sup U x xy y= − >                               (15) 

( ) ( ) , 0
y

u y Sup u x xy y= − >                                (16) 

This implies: 

( ) ( ) , 0
y

u x Inf u y xy y= + >                                 (17) 

[14] shows ( ) ( )( ) 1
U U

−
′ ′= −   and also, setting ( ) ( )( ) 1

I U
−′= − , the below is obtained. (Under 0y > . U ′  

means xU∂  and so forth.) 

d
d
Qx I y
P

 =  
 

                                            (18) 

( ) ( )( ) ( )U y U I y yI y≡ −                                   (19) 

( ) ( )P
x

u x Sup E U x=     is converted to: 

( ) dinf
dy

Qu y E U y
P

  =     


 .                                  (20) 

The relationship is as follows. (The below, including 0w , reconfirms x is the initial value of wealth.) 

( ) d d
d d
Q Qu y E U y
P P

  ′ ′=     


                                   (21) 

( )

( )

0
ˆ, 0

d d
d d

Q Tw V w t E X

Q QE I y u y
P P

 = = =  
   ′= = −    



                              (22) 

We use x and y for general variables. The maximization problem ( ),

t

M L
TSup E U w

ϕ
    is re-translated as fol-  

lows with some simplification for interception (No interception affine transform. Notation of ,M Lu  and others 
are used.); 

( ) ( ), ,

T

M L M L
T

w
u x Sup E U w =                                   (23) 
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( ) ( ), , 0M L

x
u y Sup u x xy y= − >                                   (25) 

( )

( )
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1

11
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if 0
1

if
1

if

M L

L Ly y L
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= ≤ ≤
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−∞ <


                         (26) 

(For illustrative purpose, see Figure 4 for u(x) and Figure 5 for its dual function.) 
Note that ( ),M Lu y′

  is continuous at y L γ−= . To find the optimal **
Tw , we prepare the following: 

( )
1

, -0  M Lu y M H y L y H L y Mγ γ γγ
−

− −′    = − × < < − × < <                (27)
 

(In H M yγ− <  , none exists.)
 H[z] is a hebiside (step) function having value 1 only the area z and others 0. 

Using Merton case (See Appendix A.) and setting the Radon-Nikodym derivative as d
d t t
Q g
P

≡  and the La-

grangian coefficient λ  as before, we already know the below: 

( )
w

arg STD
t T t t TSup U w g

w
λ= =

∂  = ⋅ ∂ 
                          (28) 

and 

( )d d
d d
Q Qx E I y u y
P P

   ′= = −    
                                 (29) 

This leads to the following: 

( ) ( ) ( )
1 1

** , Max , Max ,0M L
t t t tw u g M g g Lγ γλ λ λ− −  ′= − = − −  

  
                    (30) 
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Figure 4. ( ),M Lu y , and, ( )M Lu y

, . (The left and right illustrations are, respectively, the functions of ( )M Lu y, ,and, 

( )M Lu y

, . “M” and “L” are, as shown in Figure 2 and Figure 3 respectively, the minimum asset value level and the 

target asset value level. Regarding the size of M and L, M < L is supposed. In the case of either 0 1< <γ  or 1≤ γ , 

naturally, we have the same kind of shape as shown. γ  is the parameter of the utility function w1 1
1

− −
−

γ

γ
.) 
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Figure 5. ( )′M Lu y

,− . (The illustration of the function ( )′M Lu y

,− . “M” and “L” are, as shown in Figure 2 and Figure 
3 respectively, the minimum asset value level and the target asset value level. Regarding the size of M and L, M<L is 
supposed. In the case of either 0 1< <γ  or 1≤ γ , naturally, we have the same kind of shape as shown. γ  is the 

parameter of the utility function w1 1
1

− −
−

γ

γ
.) 

3.2. Analytic Solutions 
The optimal solution tw  which sets **

Tw  at t = T, **
tw  is as the follows. The solution will be to buy or sell op-

tions. The self-financing condition is filled by using tς  as below. tς  is depicted λ  in [13]. To obtain an 
analytical form of **

tw  of the ,M LU  case, the stopping time problem of HJB is related to this issue ([13]). We  
are supposing so to speak an American type option and any time arriving ( ) ( )e

fr T s
t s s t Tw E L− −
= == . It is natural  

to invest all money in Risk Free Asset to secure L at t = T. In such a case, ( ),

t

M L
TSup E U w

ϕ
    is thought to be,  

at any time t τ= , in Q-measure, to act as satisfy ( ),M LSup E U w
τ

τ
ϕ

   . In case any time arriving 

( ) ( )e
fr T s

t s s t Tw E L− −
= == , all money is invested to Risk Free Asset and we omit this description henceforth. De-  

rivative investment researches support those above. ([15,16] and etc.) 
The optimal solution: 

( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
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1 2

1 2
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ζ ζ
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σ
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σ
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  − 
  
 =

         (31) 

for the left side (For reference, see Figure 2), and; 
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( )( )
( ) [ ]( )( )
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( ) ( ) ( )

**

**

1 2

1 2

, e

e ,0

,

e

e

f

f

r

r

r T tSTD
P T t t

r T t
P T t

STD
t t t

t

r T tSTD STD
t t t t
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= − − +

                        (32) 

for the right side (For reference, see Figure 3). 
“Put(K, τ )” and “Call(K, τ )” in equations above are meaning Black-Scholes put option and call option 

prices respectively with the parameters of strike price K and maturity τ  with underlying asset STDX . Other 
parameters are as follows. Again, tζ  is decided by a self-financing condition with option premium taken into 
account. 

tζ =  a scalar and it varies if time varies. 

3.3. Intuitive Analysis 
The following presents the intuition of the solution above. 

The solution (31) is a “protective put option” “like” strategy. Because the utility suddenly has negative infinite 
value if the pension asset value becomes below “M.” In order to avoid investor’s wealth value’s being below 
“M,” the solution will be to buy a put option of asset STD

tX  with strike price M. In reality, the strike price will 
be adjusted by some fixed numbers tζ  because to buy the put option, the option premium amount should be 
paid. 

The solution (32) is a “covered call option” “like” strategy. Because there is no incentive to let the wealth in-
crease once the wealth achieves the target amount “L.” The asset consists of STD

tX  and a short position of the 
call option. To sell a call option (covered call) meaning that the investor wants to achieve the target amount but 
there is no need to be above level “L.” As is the same of the protective put option case, the strike price will be 
adjusted by a fixed figure tζ  because selling call options makes money, and the money should also invested as 
the same way of STD

tX . 
The solution of the case of both constraints (lower and upper bounds) is in Appendix A. 

4. Numerical Example 
Using the solution of the case of a kinked utility at a maximum wealth (a covered call strategy case), I per-
formed a Monte Carlo simulation. The solution strategy means that the investor’s wealth is under the target 
wealth currently (under-funding), and the strategy aims to achieve the target wealth (full-funding). In the simu-
lation, 10,000 return patters are generated for Risky Asset’s using a geometric Brownian motion. Details of pa-
rameters are as follows. Each of the periods means one year and the total number of years is 20. As a benchmark, 
we denote the Merton model solution as “Standard strategy (STD).” The solution of a covered call strategy is 
“Covered Call strategy (CC).” A funding target “L” is exogenously given at each time. I understand CC is an 
optimal strategy under the kinked utility and STD is an optimal strategy under the “normal” utility, so I compare 
apples and oranges. However, I think it is worthwhile to compare those. 

Before moving to Monte Carlo simulation results, we show the case of Risky Asset return is always constant. 
Figure 6 and Figure 7, and, Table 1 and Table 2 show the case of always −10% return and always +10% return 
respectively. 1t tζ η= +  and ( )1t tη η+  is the option premium ratio versus the notional amount. 

In those, “return1” is in amount base, and “return2” is percentage base. 
In the following simulations, the strategies’ actions at the beginning of period t = 1 are identical and as follows:  
• tζ  is 1.596. 
• Call option strike price 63 (L0/1.596), current price 70, tenor 20, 

Premium 38%, Principal amount 112 (70 × 1.596) 
Initial money available = “70 + option premium 41.7” = 111.7. 

• Initial money is invested into Risky Asset 70% and Cash 30% (This background will be shown below). 
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Figure 6. Strategy asset value and liability value. (Risky Asset returns = −10%.) (The case of always −10% return for 
Risky Asset. tζ  is decided by a self-financing condition with option premium taken into account. tη  is defined as 

1tζ η= +  and ( )1t t+η η  is the option premium ratio versus the notional amount. The return of Risky Asset t = 1 
decides which kind of call option should be sold in the Covered Call (CC) Strategy at the beginning of period t = 2 and 
so forth for the full multi-period case. Here all returns are −10%, so, CC Strategy’s leveraging and investing into 
Risky Asset (Standard portfolio STD

tX ) makes the difference between pension asset and liability worse as a result.) 
 

 
Figure 7. Strategy asset value and liability value. (Risky Asset returns = +10%.) (The case of always +10% return for 
Risky Asset. tζ  is decided by a self-financing condition with option premium taken into account. tη  is defined as 

1t = +ζ η  and ( )1t t+η η  is the option premium ratio versus the notional amount. The return of Risky Asset t = 1 
decides which kind of call option should be sold in the Covered Call (CC) Strategy at the beginning of period t = 2 and 
so forth for the full multi-period case. Here all returns are +10%, so, in the process of pension asset’s achieving liabil-
ity, the return is a little behind the Standard (STD) Strategy case but finally the pension fund is full-funding.) 

 
The return of Risky Asset t = 1 decides which kind of call option should be sold in the CC Strategy at the be-

ginning of period t = 2 and so forth for the full multi-period case.  
In case all returns are −10%, leveraging and investing into Risky Asset (Standard portfolio STD

tX ) makes the 
difference between pension asset and liability large. On the other hand, in the case that all returns are +10%, in 
the process of pension asset’s achieving liability, the return is a little behind the STD case but finally the pension 
fund is full-funding. 

Generally speaking, a worse funding level makes tζ  larger, and this means more call options must be sold. 

4.1. Case 1 (Standard Case) 
The following are assumptions are made: 
• Risky Asset: Return 5% p.a., Volatility 20% p.a., Brownian motion. 
• Cash: Return (risk free return) 1% p.a., Volatility 0%. 
• CC Strategy: Utility function LU  is used. 1.411γ = . 
• Pension fund total asset value tw : Initially 70 at t = 0. 
• Pension Liability tL : Initially 100 at t = 0. Will increase at 2% p.a. 
• Total periods: 20 years. 

As a benchmark strategy, STD Strategy is targeting making asset from under-funding (70) to full-funding  
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Table 1. Returns of risky asset are all time −10% case. Details of monte carlo simulation. 

 At the start pf the period   At the end of the period    

    ζ = 1 + η Xt  Market CC Strategy Market return return STD Strategy return return 

T-t Lt wt η ζ ζwt Call Value Xt Call Value (money) (%) MV (money) (%) 

20 100.0 70.0 0.60 1.596 111.7 41.7 70.0 100.5 32.2 68.3 −1.7 −2.4% 63.0 −7.0 −10.0% 

19 102.0 68.3 0.43 1.43 97.7 29.4 68.3 87.9 21.9 66.1 −2.3 −3.3% 56.7 −6.3 −10.0% 

18 104.0 66.1 0.30 1.304 86.1 20.1 66.1 77.5 14.3 63.2 −2.8 −4.3% 51.0 −5.7 −10.0% 

17 106.1 63.2 0.21 1.209 76.4 13.2 63.2 68.8 8.9 59.9 −3.4 −5.3% 45.9 −5.1 −10.0% 

16 108.2 59.9 0.14 1.138 68.1 8.3 59.9 61.3 5.2 56.1 −3.8 −6.3% 41.3 −4.6 −10.0% 

15 110.4 56.1 0.09 1.087 61.0 4.8 56.1 54.9 2.8 52.0 −4.1 −7.3% 37.2 −4.1 −10.0% 

14 112.6 52.0 0.05 1.05 54.6 2.6 52.0 49.2 1.4 47.8 −4.2 −8.1% 33.5 −3.7 −10.0% 

13 114.9 47.8 0.03 1.027 49.1 1.3 47.8 44.2 0.6 43.6 −4.2 −8.9% 30.1 −3.3 −10.0% 

12 117.2 43.6 0.01 1.013 44.1 0.5 43.6 39.7 0.2 39.5 −4.1 −9.4% 27.1 −3.0 −10.0% 

11 119.5 39.5 0.01 1.005 39.7 0.2 39.5 35.7 0.1 35.6 −3.8 −9.7% 24.4 −2.7 −10.0% 

10 121.9 35.6 0.00 1.002 35.7 0.1 35.6 32.1 0.0 32.1 −3.5 −9.9% 22.0 −2.4 −10.0% 

9 124.3 32.1 0.00 1.001 32.1 0.0 32.1 28.9 0.0 28.9 −3.2 −10.0% 19.8 −2.2 −10.0% 

8 126.8 28.9 0.00 1.001 28.9 0.0 28.9 26.0 0.0 26.0 −2.9 −10.0% 17.8 −2.0 −10.0% 

7 129.4 26.0 0.00 1.001 26.0 0.0 26.0 23.4 0.0 23.4 −2.6 −10.0% 16.0 −1.8 −10.0% 

6 131.9 23.4 0.00 1.001 23.4 0.0 23.4 21.1 0.0 21.1 −2.3 −10.0% 14.4 −1.6 −10.0% 

5 134.6 21.1 0.00 1.001 21.1 0.0 21.1 19.0 0.0 18.9 −2.1 −10.0% 13.0 −1.4 −10.0% 

4 137.3 18.9 0.00 1.001 19.0 0.0 19.0 17.1 0.0 17.1 −1.9 −10.0% 11.7 −1.3 −10.0% 

3 140.0 17.1 0.00 1.001 17.1 0.0 17.1 15.4 0.0 15.3 −1.7 −10.0% 10.5 −1.2 −10.0% 

2 142.8 15.3 0.00 1.001 15.4 0.0 15.4 13.8 0.0 13.8 −1.5 −10.0% 9.5 −1.1 −10.0% 

1 145.7 13.8 0.00 1.001 13.8 0.0 13.8 12.4 0.0 12.4 −1.4 −10.0% 8.5 −0.9 −10.0% 

0 148.6               

The case of always −10% return for Risky Asset. tζ  is decided by a self-financing condition with option premium taken into account. tη  is de-

fined as 1tζ η= +  and ( )1t tη η+  is the option premium ratio versus the notional amount. In the simulation, the strategies’ actions at the begin-

ning of period t = 1 is set as; tζ  is 1.596. Call option strike price 63 (L0/1.596), current price 70, tenor 20, Premium 38%, Principal amount 112 (70 
× 1.596). Initial money available = “70 + option premium 41.7” = 111.7. Initial money is invested into Risky Asset 70% and Cash 30%. The return of 
Risky Asset t = 1 decides which kind of call option should be sold in the Covered Call (CC) Strategy at the beginning of period t = 2 and so forth for 
the full multi-period case. Here all returns are −10%, so, CC Strategy’s leveraging and investing into Risky Asset (Standard portfolio STD

tX ) makes 
the difference between pension asset and liability worse as a result. 
 
(100*(1 + 2%)^20) in 20 years. The expected return of STD should be 3.835%. This leads to STD

tX ’s composi-
tion of Risky Asset around 70% and Cash around 30%. 

In CC Strategy, the underlying asset of call option is STD
tX , and the notional amount is STD

t tXζ . 

4.2. The Simulation Results and Comparison of CC Strategy and STD Strategy 
4.2.1. Return Superiority of Monte Carlo Simulation 

Figure 8 shows 10,000 times Monte Carlo simulation results of total 20 years returns. The horizontal axis is 
STD’s full period annual return, and vertical axis is CC’s full period annual return. Dots show pair returns of 
(STD, CC) for 10,000 times simulation. 
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Table 2. Returns of risky asset are all time +10% case. Details of Monte Carlo simulation. 

 At the start pf the period   At the end of the period    

    ζ = 1 + η Xt  Market CC Strategy Market return return STD Strategy return return 

T-t Lt wt η ζ ζwt Call Value Xt Call Value (money) (%) MV (money) (%) 

20 100.0 70.0 0.60 1.596 111.7 41.7 70.0 122.9 49.8 73.1 3.1 4.5% 77.0 7.0 10.0% 

19 102.0 73.1 0.61 1.606 117.4 44.3 73.1 129.2 52.9 76.3 3.2 4.3% 84.7 7.7 10.0% 

18 104.0 76.3 0.61 1.613 123.0 46.8 76.3 135.4 55.9 79.5 3.2 4.2% 93.2 8.5 10.0% 

17 106.1 79.5 0.62 1.616 128.4 49.0 79.5 141.3 58.6 82.7 3.2 4.1% 102.5 9.3 10.0% 

16 108.2 82.7 0.62 1.615 133.6 50.9 82.7 147.0 61.0 86.0 3.3 4.0% 112.7 10.2 10.0% 

15 110.4 86.0 0.61 1.611 138.6 52.5 86.0 152.4 63.1 89.3 3.3 3.9% 124.0 11.3 10.0% 

14 112.6 89.3 0.60 1.602 143.1 53.8 89.3 157.4 64.7 92.7 3.4 3.8% 136.4 12.4 10.0% 

13 114.9 92.7 0.59 1.589 147.3 54.6 92.7 162.0 65.9 96.1 3.4 3.7% 150.1 13.6 10.0% 

12 117.2 96.1 0.57 1.571 151.0 54.9 96.1 166.2 66.5 99.7 3.5 3.6% 165.1 15.0 10.0% 

11 119.5 99.7 0.55 1.551 154.6 54.9 99.7 170.0 66.8 103.2 3.6 3.6% 181.6 16.5 10.0% 

10 121.9 103.2 0.53 1.526 157.5 54.3 103.2 173.3 66.4 106.9 3.7 3.5% 199.7 18.2 10.0% 

9 124.3 106.9 0.50 1.497 160.0 53.1 106.9 176.0 65.4 110.7 3.8 3.5% 219.7 20.0 10.0% 

8 126.8 110.7 0.47 1.466 162.2 51.6 110.7 178.4 63.9 114.5 3.9 3.5% 241.7 22.0 10.0% 

7 129.4 114.5 0.43 1.431 163.9 49.3 114.5 180.3 61.7 118.5 4.0 3.5% 265.8 24.2 10.0% 

6 131.9 118.5 0.39 1.393 165.1 46.6 118.5 181.6 58.9 122.6 4.1 3.5% 292.4 26.6 10.0% 

5 134.6 122.6 0.35 1.351 165.7 43.0 122.6 182.3 55.3 126.9 4.3 3.5% 321.6 29.2 10.0% 

4 137.3 126.9 0.31 1.306 165.8 38.8 126.9 182.4 50.9 131.4 4.5 3.5% 353.8 32.2 10.0% 

3 140.0 131.4 0.26 1.256 165.0 33.6 131.4 181.5 45.5 136.1 4.7 3.5% 389.2 35.4 10.0% 

2 142.8 136.1 0.20 1.197 162.9 26.8 136.1 179.2 38.2 141.0 4.9 3.6% 428.1 38.9 10.0% 

1 145.7 141.0 0.12 1.124 158.4 17.5 141.0 174.3 28.6 145.7 4.7 3.3% 470.9 42.8 10.0% 

0 148.6               

The case of always +10% return for Risky Asset. tζ  is decided by a self-financing condition with option premium taken into account. tη  is de-

fined as 1tζ η= +  and ( )1t tη η+  is the option premium ratio versus the notional amount. In the simulation, the strategies’ actions at the begin-

ning of period t = 1 is set as; tζ  is 1.596. Call option strike price 63 (L0/1.596), current price 70, tenor 20, Premium 38%, Principal amount 112 (70 
× 1.596). Initial money available = “70 + option premium 41.7” = 111.7. Initial money is invested into Risky Asset 70% and Cash 30%. The return of 
Risky Asset t = 1 decides which kind of call option should be sold in the Covered Call (CC) Strategy at the beginning of period t = 2 and so forth for 
the full multi-period case. Here all returns are +10%, so, in the process of pension asset’s achieving liability, the return is a little behind the Standard 
(STD) Strategy case but finally the pension fund is full-funding. 
 

CC Strategy shows that its return has a 3.856% cap (upper limit). This means that the strategy’s aim is 
achieve a funding level of 100%, and the 3.835% return is enough. (As described before, the 3.835% return 
makes the funding level from 70% to 100% based on 2% p.a. liability increase for 20 years.) The possibility of a 
final return of CC is better than STD is almost every case. But, there is an effect of additional return especially if 
STD’s return is negative. 

In addition to the full 20-year results, Figure 9 shows 5 years later and 10 years later interim results. 
The shape tends to become covered call type payoff. 

4.2.2. Distribution of Returns 
Figure 10 shows 10,000 times Monte Carlo simulation return distribution results. 
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Figure 8. Comparison of CC Strategy and STD Strategy. (This shows 10,000 times Monte Carlo simulation results of 
total 20 years returns. The horizontal axis is Standard Strategy (STD)’s full period annual return, and vertical axis is 
Covered Call Strategy (CC)’s full period annual return. Dots show pair returns of (STD, CC) for 10,000 times simu-
lation. The 45 degree line shows CC return = STD return.) 
 

 
 

 
Figure 9. 5 years period (up), 10 years period (down). (This shows 5 years later and 10 years later interim results with 
the same setting of the case of Figure 8, where the result of the full 20-year case is shown. These also show 10,000 
times Monte Carlo simulation results. The horizontal axis is Standard Strategy (STD)’s full period annual return, 
and vertical axis is Covered Call Strategy (CC)’s full period annual return. Dots show pair returns of (STD, CC) for 
10,000 times simulation. The 45 degree line shows CC return = STD return.) 
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CC Strategy return distribution shows that both fewer big positive return and fewer big negative return arise. 

4.2.3. Volatility Distribution 
CC has a smaller and more narrowly distributed volatility as shown in Figure 11. 
The following summarize the CC Strategy characteristics: 
• Full period total return of the CC Strategy and STD Strategy look like the same, but the CC Strategy has 

downside resistance, meaning superior returns especially when STD Strategy has negative returns. 
• According to the Monte Carlo simulation, the CC Strategy has fewer negative and more positive return op-

portunities. 
• Volatility of the CC Strategy is very small on average. 

4.3. Sensitivity of the Simulation 
Setting parameters differently versus Case 1, I checked the sensitivity of the volatility increase and expected re-
turn improvement. Table 3 shows those new parameters. The return distribution is shown in Figure 12. 

This sensitivity analysis shows the following: 
• In Table 3, you see the ratio of CC to STD is superior by 46.5% (almost half and half) in Case 1. Case 3 is 

higher volatility of Risky Asset and the ratio of Case 3 is as large as 58.9%. Instead, in Case 2, which is the 
smaller volatility case, the ratio is only 19.3%. 

• In case of a higher expected return of Risky Asset (Case 5), we see the ratio is 30.3% and in case of a smaller 
expected return, we see the ratio is 67.5%. 

Therefore, the following observations can be made: 
• Reducing volatility makes less risk averse and less cash position. As a result, portfolio volatility increases 

and the premium earned by covered call increases. 
• Increasing volatility makes more risk averse and more cash position. As a result, portfolio volatility de-

creases and the Covered Call effect decreases. 
• In case expected return decreases, more Risky Asset ratio makes more Covered Call merit. 
 

 
Figure 10. Return distribution of CC Strategy and STD Strategy. (This shows 10,000 times Monte Carlo simulation 
return distribution results. Covered Call (CC) Strategy return distribution shows that both fewer big positive return 
and fewer big negative return arise than that of Standard (STD) Strategy.) 
 

 
Figure 11. Volatility distribution of CC Strategy and STD Strategy. (This shows 10,000 times Monte Carlo simulation 
return’s volatility distribution results. Covered Call (CC) Strategy has a smaller and more narrowly distributed vola-
tility than Standard (STD) Strategy.) 
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Table 3. Parameters of simulations and results. 

 Case 2 Case 1 Case 3  Case 4 Case 1 Case 5 

Parameters        
Initial Liability: L0 100 100 100  100 100 100 

Initial Asset: w0 70 70 70  70 70 70 

Liabiilty growth ratio 2% 2% 2%  2% 2% 2% 

risk free interest rate 1% 1% 1%  1% 1% 1% 

γ of Utility 5.650 1.411 0.627  0.353 1.6 3.170 

Risky Asset’s return: μ 5% 5% 5%  3% 5% 7% 

Risky Asset’s volatility: σ 10% 20% 30%  20% 20% 20% 

Risky Asset’s Sharpe Ratio 0.40 0.20 0.13  0.10 0.20 0.30 

periods (years) 20 20 20  20 20 20 

Characteristics        
Risky Asset weight 71% 70.9% 71%  142% 63% 47% 

Portfolio return 3.8% 3.8% 3.8%  3.8% 3.5% 3.8% 

Portfolio risk 7.1% 14.2% 21.3%  28.3% 12.5% 9.5% 

Portfolio Sharpe Ratio 0.40 0.20 0.13  0.10 0.20 0.30 

Initial Funding Ratio 70% 70% 70%  70% 70% 70% 

Liability Value at the end of the period 149 149 149  149 149 149 

Necessary returns calculated from 
initial Funding Ratio 3.8% 3.8% 3.8%  3.8% 3.8% 3.8% 

 
Simulation Results        

Ratio of CC is superior to STD 19.3% 46.5% 58.9%  67.5% 46.5% 30.3% 

This shows 10,000 times Monte Carlo simulation results of total 20 years returns like Figure 8. Several cases of the parameters of drift and volatility 
are tested. The upper part of the table shows parameters. The middle part of the table shows characteristics. The bottom part of the table shows the 
results of the comparison for several cases. The ratios of simulation results, which shows Covered Call Strategy (CC) is superior to Standard Strategy 
(STD) regarding the end of returns (the end of asset values), are shown. 

5. Relation with the Optimality of Option Strategies 
In Section 1, I introduced previous works about portfolio insurance and put option optimality discussions. Al-
though works of [11-13] and this paper treat dynamic strategy meaning not buying and holding strategies nor 
one period models, this Section starts one period model discussion of [8,10]. 

Actually, regarding [8], the model supposing the risk neutral measure of Black-Sholes type, a CRRA utility 
function, and a geometric Brownian motion for a risky asset return, finds a myopic strategy. In addition, it 
shows as same characteristics as one period model. Using this paper’s notation (Appendix B, portfolio STDX ), 
their calculations express the payoff function of put option strategy G (function of reference portfolio value X ) 
and the utility function U at the end period time t = T as follows. 

( ) ( )STD
T TG X M X M= ≤                                       (33) 

( ) ( )STD STD
T T TG X X M X= ≤                                     (34) 

( ) ( ) ( ) ( )2S

a
STD STD
T TU M K X X Mσ

−
′ = ≤                             (35) 

( ) ( ) ( ) ( )2S

a
STD STD STD
T T TU X K X M Xσ

−
′ = ≤                           (36) 
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Figure 12. Case2, Case 3, Case 4 and Case 5 Comparison of CC Strategy and STD Strategy of Monte Carlo simula-
tion return. (This shows 10,000 times Monte Carlo simulation results of total 20 years returns like Figure 8 but sever-
al cases of the parameters of drift and volatility are tested. The horizontal axis is Standard Strategy (STD)’s full pe-
riod annual return, and vertical axis is Covered Call Strategy (CC)’s full period annual return. Dots show pair re-
turns of (STD, CC) for 10,000 times simulation. Parameters are in Table 3.) (From Top Left Case 2, Top Right Case 3, 
Bottom Left Case 4, Bottom Right Case 5). 
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constraints. 
They discussed that above (35) indicates that risk premium should be zero and this turns out with (36) that the 

utility function U is a linear function. Figure 13 illustrates this. Here our model solution for protective put type 
strategy varies its strike price and its amount of option time to time. This fill the gap between the difference of 
utility functions of Figure 2 and Figure 13. 

[10]’s discussion is put option buying and holding optimality. Using this paper’s notation, with a CRRA utili-
ty function and Black-Sholes assumption, they can indicate the risk averseness γ  (time varying) as the follow-
ing function. 

( )
( )

1

ln
1 e

ln

f

t S f S STD S
tr t

STD S f S STD S
t t

M N t r t X M t

X N t r t X M t

γ
σ σ σ

σ σ σ
−

=
  × − −    +
  × + +    

             (37) 

In their case, they set γ  time dependent to match put option buy and hold as optimal. In this paper, again, 
the solution is a protective put “like” strategy which varies its strike price and its amount of option time to time. 

With our model, [13]’s discussion is more relevant than that of [11,12]. (The latter discusses with outflow and 
some more general strategies.) [13] showed optimality of the Option Based Portfolio Insurance method. We set 
a scalar ζ  from self-financing constraints time varying, and, its strike price and its amount of option varying 
time to time, as they use λ  for that purpose. 

6. Summary and Related Discussions 
For an investment strategy with a smooth utility function, the Merton model solution is obtained under strict 
conditions that the utility function is differentiable and strictly concave. When [7] set constraints or an adjusted  
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Figure 13. An illustration of the utility function U(w). Because of convex shape, the utility function’s value goes to –∞ 
when approaches the minimum asset value level “M.” 
 
utility function, such as once the pension asset value achieves “L (indicating its liability level)” from un-
der-funding status, the utility will not increase as even though the asset value increases, and the Merton condi-
tions are not satisfied. 

This paper described optimal investment strategies for kinked utility functions like CRRA utility function 
with a kink at a maximum wealth. The solutions are analytic mathematical solutions, one of which expresses a 
covered call option “like” strategy with dynamically managed and the option parameter varies. The other is a 
protective put option “like” strategy with dynamically managed and the option parameter varies. Dual utility 
with a Black-Sholes assumption is utilized in the solutions. 

Some related discussions are described. For generally, non-smooth and/or non-strictly-concave utility func-
tions, it is not clear if there exist smooth solutions to the HJB. To deal with the lack of a priori knowledge of the 
differentiability of the value function one may use a weak solution concept and characterize the value function 
as a unique viscosity solution to the HJB ([17-21] and etc.). It is in general difficult to show the differentiability 
of the value function even it is known to be a viscosity solution to the HJB. The lack of the differentiability of 
the value function makes it impossible to apply the verification theorem to find the optimal control. Another re-
lated issue is the Backward Stochastic Differential equations ([22] and etc.). Future work should involve solving 
the problem regarding those points. 

Finally, the following summarize the numerical simulations for the Merton model strategy (STD) and the 
covered call strategy (CC) described above. 
• Full period total return of the CC Strategy and STD Strategy look the same, but the CC Strategy has down-

side resistance, meaning superior returns especially when the STD Strategy has negative returns. 
• According to the Monte Carlo simulation, the CC Strategy has fewer negative and more positive return op-

portunities. 
• Volatility of CC Strategy is very small on average. 
• The CC Strategy merit will increase if volatility increases but the merit decreases if expected return in-

creases.  

References 
[1] R. C. Merton, “Optimum Consumption and Portfolio Rules in a Continuous-Time Model,” Journal of Economic Theory, Vol. 3, 

No. 4, 1971, pp. 373-413. http://dx.doi.org/10.1016/0022-0531(71)90038-X 
[2] R. C. Merton, “Continuous-Time Finance,” Blackwell Publishers, Oxford, 1992. 
[3] R. C. Merton, “Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case,” Review of Economics and Statis-

tics, Vol. 51, No. 3, 1969, pp. 247-257. http://dx.doi.org/10.2307/1926560 
[4] R. C. Merton, “Optimum Consumption and Portfolio Rules in a Continuous-Time Model,” Journal of Economic Theory, Erra-

tum, Vol. 6, No. 2, 1973, pp. 213-214. 

U/U0

w/w0
1 L/w0M/w0

OPEN ACCESS                                                                                         JMF 

http://dx.doi.org/10.1016/0022-0531(71)90038-X
http://dx.doi.org/10.2307/1926560


M. YAMASHITA 72 

[5] J. C. Cox and C.-F. Huang,”Optimal Consumption and Portfolio Policies When Asset Prices Follow a Diffution Process,” 
Journal of Economic Theory, Vol. 49, No. 1, 1987, pp. 33-83. http://dx.doi.org/10.1016/0022-0531(89)90067-7 

[6] B. Bian, S. Miao and H. Zheng, “Smooth Value Functions for a Class of Nonsmooth Utility Maximization Problems,” SIAM 
Journal of Financial Mathematics, Vol. 2, 2011, pp. 727-747. 

[7] L. Martellini and V. Milhau, “Dynamic Allocation Decisions in the Presence of Funding Ratio Constraints,” Working Paper of 
EDHEC, Roubaix, 2009. 

[8] M. J. Brennan and R. Solanki, “Optimal Portfolio Insurance,” The Journal of Financial and Quantitative Analysis, Vol. 16, No. 
3, 1981, pp. 279-300. http://dx.doi.org/10.2307/2330239 

[9] H. E. Leland, “Who Should Buy Portfolio Insurance?” The Journal of Finance, Vol. 35, No. 2, 1980, pp. 581-594. 
[10] S. Benninga and M. Blume, “On the Optimality of Portfolio Insurance,” The Journal of Finance, Vol. 40, No. 5, 1985, pp. 

1314-1352. http://dx.doi.org/10.1111/j.1540-6261.1985.tb02386.x 
[11] J. C. Cox and H. E. Leland, “On Dynamic Investment Strategies,” In: Proceedings of the Seminar on the Analysis of Securities 

Prices, Center for Research in Security Prices (CRSP), Chicago, 1982, pp. 139-173. 
[12] J. C. Cox and H. E. Leland, “On Dynamic Investment Strategies,” Journal of Economic Dynamics and Control, Vol. 24, No. 

11-12, 2000, pp. 1859-1880. http://dx.doi.org/10.1016/S0165-1889(99)00095-0 
[13] N. El Karoui, M. Jeanblanc and V. Lacoste, “Optimal Portfolio Management with American Capital Guarantee,” Journal of 

Economic Dynamics and Control, Vol. 29, No. 3, 2005, pp. 449-468. http://dx.doi.org/10.1016/j.jedc.2003.11.005 
[14] W. Schachermayer, “Optimal Investment in Incomplete Markets When Wealth May Become Negative,” The Annals of Applied 

Probability, Vol. 11, No. 3, 2001, pp. 694-734. http://dx.doi.org/10.1214/aoap/1015345346 
[15] P. Carr and D. Madan, “Optimal Positioning in Derivative Securities,” Quantitative Finance, Vol. 1, No. 1, 2001, pp. 19-37.  

http://dx.doi.org/10.1080/713665549 
[16] J.-L. Prigent and F. Tahar, “Optimal Portfolios with Guarantee at Maturity: Computation and Comparison,” International 

Journal of Business, Vol. 11, No. 2, 2006, pp. 171-185. 
[17] L. T. Ndounkew, “Stochastic Control: With Applications to Financial Mathematics,” African Institute for Mathematical Sci-

ences Postgraduate Diploma, Muizenberg, 2010. 
[18] H. Pham, “On Some Recent Aspects of Stochastic Control and Their Applications,” Probability Surveys, Vol. 2, No. 2005, 

2005, pp. 506-549. http://dx.doi.org/10.1214/154957805100000195 
[19] H. Pham, “Stochastic Control and Applications in Finance,” Lecture Note, Paris Diderot University, LPMA, Paris, 2010. 
[20] J. Sass, “Stochastic Control: With Applications to Financial Mathematics,” Working Paper, Austrian Academy of Sciences, 

Vienna, 2006. 
[21] J. Sekine, “Long-Term Optimal Portfolios with Floor,” Finance and Stochastics, Vol. 16, No. 3, 2012, pp. 369-401. 
[22] N. El Karoui, S. Peng and M. C. Quenez, “Backward Stochastic Differential Equations in Finance,” Mathematical Finance, 

Vol. 7, No. 1, 1997, pp. 1-71. http://dx.doi.org/10.1111/1467-9965.00022 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPEN ACCESS                                                                                         JMF 

http://dx.doi.org/10.1016/0022-0531(89)90067-7
http://dx.doi.org/10.2307/2330239
http://dx.doi.org/10.1111/j.1540-6261.1985.tb02386.x
http://dx.doi.org/10.1016/S0165-1889(99)00095-0
http://dx.doi.org/10.1016/j.jedc.2003.11.005
http://dx.doi.org/10.1214/aoap/1015345346
http://dx.doi.org/10.1080/713665549
http://dx.doi.org/10.1214/154957805100000195
http://dx.doi.org/10.1111/1467-9965.00022


M. YAMASHITA 73 

Appendix A. The Solution of the Case of Both Constraints 
The solution of the case of both constraints (lower and upper bounds) is as follows. 

Optimal solution tw  which sets ***
Tw  at t = T, ***

tw , is as follows: 

( ) ( ) ( ) ( ) ( ) ( )***
1 2 1 2e e

r rr T t r T tSTD STD
t t t t tw X N d L N d X N d L N dζ ζ− − − −= + − − − +            (A.1) 

tζ =  scalar and varies if time varies. Decided by self-financing constraints. 
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Appendix B. The Merton Model’s Solution 
The Merton model’s solution is identified as follows: 

( )
t

STD
P TSup E U w

ϕ
                                      (B.1) 

Subject to: ( ) [ ]0 ,0 e
fSTD r T

Q TV w E w−=  
P: Market measure, Q: Risk neutral measure 
Using HJB, 

( ) ( ) ( )2 2 2 21,
2

STD STD STD S f f STD s
t w t t wwDV w t V V w r r V wϕ µ σ ϕ = + − + +               (B.2) 

( ) ( ),STD STD
TV w T U w=  

fr : risk free rate, constant 
D : Partial differential operator 

( ),STDV w t : Value function of ( )STD
TU w  

The first order condition of HJB, ( ),STDDV w t  equal to 0 and stationary solution premise gives us the fol-
lowing. 

( ) ( )2 2

S f S f

S S

t STD
ww

t STD
w

r r

Vw
V

µ µ

σ σ
ϕ

γ

− −

= − ＝                                   (B.3) 

The investment strategy solution means that constanttϕ = . We set STDX  for the portfolio by this strategy. 
The basic characteristics of the Merton model’s solution are as follows: 
Regarding ( ),STDV w t , the expected value of Tw  when ( ) ( )max , maxSTD STD

TV w T U w=  is calculated as 
below. We solve the optimization problem by the Lagrangian equation as follows: 

( ) [ ] ( )( )0e ,0
fSTD r T

P T Q TL E U w E w V wλ − = − −                          (B.4) 

The Radon-Nikodym derivative is set as d
d t t
Q g
P

≡ , and we set as follows:  

( )
w

arg STD
t T t t TSup U w g

w
λ= =

∂  = ⋅ ∂ 
                                (B.5) 
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All reverse function can be calculated, and optimal wealth at t = T, *
Tw , will be the following: 

( ) ( ) ( )
1 1 1

*
0e

fSTD r T
T t t T t t T P t t Tw U g g w E g

w

γγγ
γ γλ λ λ

− −−− −
= = =

 ∂     = = =      ∂    
         (B.6) 
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