The Adiabatic Invariant of Dark Matter in Spiral Galaxies

HTML  XML Download Download as PDF (Size: 2423KB)  PP. 355-367  
DOI: 10.4236/ijaa.2019.94025    664 Downloads   1,520 Views  Citations
Author(s)

ABSTRACT

Collisionless dark matter can only expand adiabatically. To test this idea and constrain the properties of dark matter, we study spiral galaxies in the “Spitzer Photometry and Accurate Rotation Curves” (SPARC) sample. Fitting the rotation curves, we obtain the root-mean-square (rms) velocity and density of dark matter in the core of the galaxies. We then calculate the rms velocity vhrms (1) that dark matter particles would have if expanded adiabatically from the core of the galaxies to the present mean density of dark matter in the universe. We obtain this “adiabatic invariant” vhrms (1) for 40 spiral galaxies. The distribution of vhrms (1) has a mean 0.87 km/s and a standard deviation of 0.27 km/s. This low relative dispersion is noteworthy given the wide range of the properties of these galaxies. The adiabatic invariant vhrms (1) may, therefore, have a cosmological origin. In this case, the rms velocity of non-relativistic dark matter particles in the early universe when density perturbations are still linear is vhrms (a)=vhrms (1)/a, where a is the expansion parameter. The adiabatic invariant obtains the ratio of dark matter temperature Th (a) to mass mh in the early universe.

Share and Cite:

Hoeneisen, B. (2019) The Adiabatic Invariant of Dark Matter in Spiral Galaxies. International Journal of Astronomy and Astrophysics, 9, 355-367. doi: 10.4236/ijaa.2019.94025.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.