On the Diversity of Long-Term Temperature Responses to Varying Levels of Solar Activity at Ten European Observatories

HTML  XML Download Download as PDF (Size: 17192KB)  PP. 498-526  
DOI: 10.4236/acs.2019.93033    526 Downloads   1,318 Views  Citations

ABSTRACT

We analyze ten of the longest (127 to 230 year-long) time series of European daily temperatures available from five different Köppen-Geiger climate classes. We split these according to the level of solar cycle activity (H for “higher than median” and L for “lower than median”). This reveals coherent patterns in the temperature differences: when TH-Tare stacked according to their calendar date, the daily averages from January 1 to December 31st disclose characteristic features in addition to the dominant annual seasonal wave, namely variations up to 2°C lasting for about 1.5 to 3 months. The five observatories at intermediate latitudes in a band from Oxford in the West to Prague in the East (same climate class) have very similar signatures. These similarities are most unlikely to be due to pure chance (confirmed by confidence levels in excess of 99% with the Kolmogorov-Smirnov and Kuiper nonparametric tests). The TH-TL patterns carry a regional signature, modulated by a more local response function. On the other hand, northern European observatories (St Petersburg and Arkhangelsk), those south of the Alps (Milan and Bologna), and the easternmost one in Astrakhan, corresponding to different climate classes, have different signatures. Similarly, preliminary study of long air pressure recordings confirms what emerges from the analysis of temperatures. These new observations lead us to conclude that the climate in different regions presents different responses to variations in solar activity. Moreover, the distributions of the lower, middle, and higher quartiles of the temperature and pressure indices in solar cycles with high versus low activity are significantly different, providing further robust statistical confirmation to this conclusion (confidence level higher to much higher than 99% using the Kuiper test).

Share and Cite:

Kossobokov, V. , Le Mouël, J. and Courtillot, V. (2019) On the Diversity of Long-Term Temperature Responses to Varying Levels of Solar Activity at Ten European Observatories. Atmospheric and Climate Sciences, 9, 498-526. doi: 10.4236/acs.2019.93033.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.