The World in an Equation: A Reappraisal of the Lemaître’s Primeval Cosmic Rays

HTML  XML Download Download as PDF (Size: 508KB)  PP. 922-952  
DOI: 10.4236/jmp.2019.108061    968 Downloads   2,023 Views  Citations
Author(s)

ABSTRACT

Based on radioactive phenomena (weak force), Georges Lema?tre conceives, as soon as 1927, the primeval universe as a “unique super-dense quantum”, whose disintegration gave birth to all the current components of the universe [1] [2]. Using quantum mechanics, he proposes to explain the origins of the world from the point of view of quantum theory. He believes to find in the cosmic rays the manifestation of the initial fragmentation. However, regardless of the adopted cosmology, the hypothesis of the primeval atom (cold big bang) had no equation to support it and was not retained. Like all other cosmologists, he fell back on the Friedmann-Einstein equation with a repulsive cosmological constant which, according to supernova observations at the end of the millennium, propels expansion towards infinity. We juxtapose our equation of “quantum cosmology” to this equation of relativistic cosmology. We have already proposed this equation in an earlier paper [3], which has its source in quantum mechanics and fits Lema?tre’s hypothesis of the “primeval atom”. It’s an equation in which the concept of matter-space-time is mathematically connected; gravitation and electromagnetism are also bound by space-time. A mechanism is described showing how velocity, time, distance, matter and energy, are correlated. We are led to ascertain that gravity and electricity are two distinct manifestations of a single underlying process: electrogravitation. For the first time, the cosmological time, considered as a real physical object, is integrated into a “cosmological equation” which makes coherent what we know regarding the time (its origin, its flow…), the matter and the space. Moreover, the equation indicates a constantly decelerated expansion. The concentration of the material medium and the importance of the decreasing energy of the vacuum contribute to the progressive increase of the positive pressure which becomes responsible for the increasing deceleration of the expansion. Does this mean that our equation leads us inevitably to the hypothesis of the primeval atom for the whole cosmos? Certainly not, since our model includes both the hot Gamow model and the cold Lema?tre model. The term “dynamic evolution” (used in the beginning by specialists for big bang models) is appropriate for our model since there is both an explosive origin and, throughout the expansion, a disintegration of a hyper-dense matter. The discovery of cosmic microwave background radiation has confirmed the hot big bang model that Gamow and his team have achieved. The predicted light prevailed over the primitive cosmic rays (particles) suggested by Lemaitre. Nevertheless, we think that Lemaitre was also right. The so-called big bang theory (singular cataclysmic explosion), in addition to not meeting basic criteria of science, is contradicted by several observations that are ignored. For example, the work of Armenian astronomers has convinced us that the origin of cosmic particles results not only from supernova explosions, but also from the partition of radio galaxies, not only from the death of the world, but also from their birth.

Share and Cite:

Bagdoo, R. (2019) The World in an Equation: A Reappraisal of the Lemaître’s Primeval Cosmic Rays. Journal of Modern Physics, 10, 922-952. doi: 10.4236/jmp.2019.108061.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.