A Review and Comparison on Recent Optimization Methodologies for Diesel Engines and Diesel Power Generators

HTML  XML Download Download as PDF (Size: 2164KB)  PP. 31-56  
DOI: 10.4236/jpee.2019.76003    3,024 Downloads   6,936 Views  Citations

ABSTRACT

The electrical instability that frequently distinguishes the isolated networks and depends on diesel generators to supply their energy requirements leads to an operation of the diesel generator in a transient dynamic condition and/or at low loads. In addition, extended operation of the diesel generator at partial load develops the condensation of combustion residues on the engine cylinder walls, which, after a certain time, increases friction, reduces the efficiency of the equipment and increases its fuel consumption. On the other hand, recent regulatory changes have led to ever more stringent and evolving emission standards. Among these, the International Maritime Organization (IMO) and the Environmental Protection Agency (EPA) have implemented emission standards in order to reduce exhaust gas emitted by marine diesel engines. To phase lower emission engines as soon as possible, a Tier system was adopted. This paper presents a literature review of existing technologies available to optimize the energy performance of diesel engines and diesel generators in order to reduce the cost of electricity, to increase the diesel engine efficiency and to decrease their fuel consumption and greenhouse gases (GHG) emissions. The proposed optimization methodologies are based on the application of Pre-treatment, Internal treatment and Post-treatment technologies for diesel engines and on the application of mechanical and electrical technologies for diesel power generators (DPGs). The list of references given at the end of the paper should offer aids for students and researchers working in this field.

Share and Cite:

Issa, M. , Ibrahim, H. , Lepage, R. and Ilinca, A. (2019) A Review and Comparison on Recent Optimization Methodologies for Diesel Engines and Diesel Power Generators. Journal of Power and Energy Engineering, 7, 31-56. doi: 10.4236/jpee.2019.76003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.