Share This Article:

Classification of Hourly Clearness Index of Solar Radiation in the District of Yamoussoukro

Full-Text HTML XML Download Download as PDF (Size:1553KB) PP. 220-231
DOI: 10.4236/epe.2019.115014    226 Downloads   415 Views

ABSTRACT

The exploitation of systems using solar energy as a source of energy is not fluctuations free because of short passage of clouds on solar radiation. The amplitude, the persistence and the frequency of these fluctuations should be analyzed with appropriate tools, instead of focusing on their location over time. The analysis of these fluctuations should use the instantaneous clearness index whose distribution is given as a first approximation which is independent not only of the season but also of the site. It is important to evaluate the potential solar energy in a region. Indeed such evaluation helps the decision-makers in their reflections on agricultural or photovoltaic solar projects. Then this study was conducted for a predictive purpose. The method used in our work combines the classification method which is the hierarchical ascending classification and two partitioning methods, the principal component analysis and the K-means method. The partitioning method enabled to achieve a number of well-known situations (in advance) that are representative of the day. The study was based on the data of a climatic weather station in the district of Yamoussoukro located in the center region of Côte d’Ivoire during the 2017 year. Using the clearness index, the study allowed the classification of the solar radiation in the region. Thus, it showed that only 346 days of the 365 days in 2017 were classified (95%). We identified three clusters of days, the cloudy sky (29%), the partly cloudy sky (32%) and the clear sky (39%). The statistical tests used for the characterization of these clusters will be detailed in a future study.

Cite this paper

Yeboua, S. , N’Goran, Y. and Konan, K. (2019) Classification of Hourly Clearness Index of Solar Radiation in the District of Yamoussoukro. Energy and Power Engineering, 11, 220-231. doi: 10.4236/epe.2019.115014.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.