Analysis of Observed and Modelled Near-Surface Wind Extremes over the Sub-Arctic Northeast Pacific

HTML  XML Download Download as PDF (Size: 1397KB)  PP. 146-158  
DOI: 10.4236/acs.2019.91010    665 Downloads   1,264 Views  Citations

ABSTRACT

Wind speed extremes in the sub-Arctic realm of the North-East Pacific region were investigated through extreme value analysis of wind speed obtained from wind simulations of the COSMO-CLM (Consortium for Small-scale Modelling, climate version) mesoscale model, as well as using observed data. The analysis showed that the set of wind speed extremes obtained from observations is a mixture of two different subsets each neatly described by the Weibull distribution. Using special metaphoric terminology, they are labelled as “Black Swans” and “Dragons”. The “Dragons” are responsible for strongest extremes. It has been shown that both reanalysis and GCM (general circulation model) data have no “Dragons”. This means that such models underestimate wind speed maxima, and the important circulation process generating the anomalies is not simulated. The COSMO-CLM data have both “Black Swans” and “Dragons”. This evidence provides a clue that an atmospheric model with a detailed spatial resolution (we used in this work the data from domain with 13.2 km spatial resolution) does reproduce the special mechanism responsible for the generation of the largest wind speed extremes. However, a more thorough analysis shows that the differences in the parameters of the cumulative distribution functions are still significant. The ratio between the modelled Dragons and Black Swans can reach up to only 10%. It is much less than 30%, which was the level established for observations.

Share and Cite:

Kislov, A. and Platonov, V. (2019) Analysis of Observed and Modelled Near-Surface Wind Extremes over the Sub-Arctic Northeast Pacific. Atmospheric and Climate Sciences, 9, 146-158. doi: 10.4236/acs.2019.91010.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.