Pseudoscalar Top-Bottom Quark-Antiquark Composite as the Resonance with 28 GeV at the LHC: Hadron Masses and Higgs Boson Masses Based on the Periodic Table of Elementary Particles

HTML  XML Download Download as PDF (Size: 591KB)  PP. 2638-2656  
DOI: 10.4236/jmp.2018.914164    713 Downloads   1,302 Views  Citations
Author(s)

Affiliation(s)

ABSTRACT

This paper posits that the observed resonance with 28 GeV at the LHC is the pseudoscalar top-bottom quark-antiquark composite which has the calculated mass of 27.9 GeV derived from the periodic table of elementary particles. The calculated mass is for the mass of . In the periodic table of elementary particles, t quark (13.2 GeV) in the pseudoscalar top-bottom quark-antiquark composite is only a part of full t quark (175.4 GeV), so pseudoscalar (26.4 GeV) cannot exist independently, and can exist only in the top-bottom quark-antiquark composite. As shown in the observation at the LHC, the resonance with 28 GeV weakens significantly at the higher energy collision (13 TeV), because at the higher collision energy, low-mass pseudoscalar  in the composite likely becomes independent full high-mass vector  moving out of the composite. The periodic table of elementary particles is based on the seven mass dimensional orbitals derived from the seven extra dimensions of 11 spacetime dimensional membrane. The calculated masses of hadrons are in excellent agreement with the observed masses of hadrons by using only five known constants. For examples, the calculated masses of proton, neutron, pion (π±), and pion (±0) are 938.261, 939.425, 139.540, and 134.982 MeV in excellent agreement with the observed 938.272, 939.565, 139.570, and 134.977MeV, respectively with 0.0006%, 0.01%, 0.02%, and 0.004%, respectively for the difference between the calculated and observed mass. The calculated masses of the Higgs bosons as the intermediate vector boson composites are in excellent agreements with the observed masses. In conclusion, the calculated masses of the top-bottom quark-antiquark composite (27.9 GeV), hadrons, and the Higgs bosons by the periodic table of elementary particles are in excellent agreement with the observed masses of resonance with 28 GeV at the LHC, hadrons, and the Higgs bosons, respectively.

Share and Cite:

Chung, D. (2018) Pseudoscalar Top-Bottom Quark-Antiquark Composite as the Resonance with 28 GeV at the LHC: Hadron Masses and Higgs Boson Masses Based on the Periodic Table of Elementary Particles. Journal of Modern Physics, 9, 2638-2656. doi: 10.4236/jmp.2018.914164.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.