Comparison of RANS and LES in the Prediction of Airflow Field over Steep Complex Terrain

HTML  XML Download Download as PDF (Size: 5626KB)  PP. 286-307  
DOI: 10.4236/ojfd.2018.83018    1,192 Downloads   3,315 Views  Citations
Author(s)

ABSTRACT

The present study compared the prediction accuracy of the three CFD software packages for simulating airflow around a three-dimensional, isolated hill with a steep slope: 1) WindSim (turbulence model: RNG k-ε RANS), 2) Meteodyn WT (turbulence model: k-L RANS), which are the leading commercially available CFD software packages in the wind power industry and 3) RIAM-COMPACT (turbulence model: standard Smagorinsky LES), which has been developed by the lead author of the present paper. Distinct differences in the airflow patterns were identified in the vicinity of the isolated hill (especially downstream of the hill) between the RANS results and the LES results. No reverse flow region (vortex region) characterized by negative wind velocities was identified downstream of the isolated hill in the result from the simulation with WindSim (RNG k-ε RANS) and Meteodyn WT (k-L RANS). In the case of the simulation with RIAM-COMPACT natural terrain version (standard Smagorinsky LES), a reverse flow region (vortex region) characterized by negative wind velocities clearly forms. Next, an example of wind risk (terrain-induced turbulence) diagnostics was presented for a large-scale wind farm in China. The vertical profiles of the streamwise (x) wind velocity do not follow the so-called power law wind profile; a large velocity deficit can be seen between the hub center and the lower end of the swept area in the case of the LES calculation (RIAM-COMPACT).

Share and Cite:

Uchida, T. and Li, G. (2018) Comparison of RANS and LES in the Prediction of Airflow Field over Steep Complex Terrain. Open Journal of Fluid Dynamics, 8, 286-307. doi: 10.4236/ojfd.2018.83018.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.