Optimisation of Hybrid Energy System Production Parameters for Electricity Power Generation in Nigeria

HTML  XML Download Download as PDF (Size: 368KB)  PP. 198-211  
DOI: 10.4236/epe.2018.105014    900 Downloads   2,761 Views  

ABSTRACT

Solar and wind energy are two of the most viable and sustainable sources of energy due to the tendency of renewal. The power generating supplies in Nigeria appear unreliable, rapidly diminishing and expensive. Researches are sparse on operating both energy sources alongside fossil fuel for power generation in order to take advantage of their complementary characters. The aim of this study is to explore renewable sources combined with non-renewable source to generate electricity with the objective of establishing an optimal design for a hybrid solar-wind-diesel energy plant that minimizes cost. The capacity factor of the standalone system was determined for the study area. The cost of energy for the hybrid optimal mix was determined. Levelised cost of energy was also used to determine the cost of energy for standalone power system. The result shows that the energy generated 200 MW hybrid system is 392 GWh with a cost of energy of $0.24/kWh (47.8/kWh). The energy produced can power 39,200 homes in a year. The optimisation shows that the number of solar system, wind and diesel are 699, 1 and 300 respectively. The cost of energy for the standalone system was $0.06/kWh, $0.08/kWh and $0.27/kWh for wind, solar and diesel system. The capacity factor was 56%, 21% and 80% for wind, solar and diesel system. There is a reduction in the amount of greenhouse gases released to the environment alongside with cost of energy generation. Hybrid power generation system is good and effective solution for power generation than conventional energy resources.

Share and Cite:

Osita Anyaeche, C. , Akappo, T. and Omowole Adeodu, A. (2018) Optimisation of Hybrid Energy System Production Parameters for Electricity Power Generation in Nigeria. Energy and Power Engineering, 10, 198-211. doi: 10.4236/epe.2018.105014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.