Evaluation of Unknown Groundwater Contaminant Sources Characterization Efficiency under Hydrogeologic Uncertainty in an Experimental Aquifer Site by Utilizing Surrogate Models

HTML  XML Download Download as PDF (Size: 2591KB)  PP. 1612-1633  
DOI: 10.4236/jwarp.2017.913101    807 Downloads   1,522 Views  Citations

ABSTRACT

Characterization of unknown groundwater contaminant sources is an important but difficult step in effective groundwater management. The difficulties arise mainly due to the time of contaminant detection which usually happens a long time after the start of contaminant source(s) activities. Usually, limited information is available which also can be erroneous. This study utilizes Self-Organizing Map (SOM) and Gaussian Process Regression (GPR) algorithms to develop surrogate models that can approximate the complex flow and transport processes in a contaminated aquifer. The important feature of these developed surrogate models is that unlike the previous methods, they can be applied independently of any linked optimization model solution for characterizing of unknown groundwater contaminant sources. The performance of the developed surrogate models is evaluated for source characterization in an experimental contaminated aquifer site within the heterogeneous sand aquifer, located at the Botany Basin, New South Wales, Australia. In this study, the measured contaminant concentrations and hydraulic conductivity values are assumed to contain random errors. Simulated responses of the aquifer to randomly specified contamination stresses as simulated by using a three-dimensional numerical simulation model are utilized for initial training of the surrogate models. The performance evaluation results obtained by using different surrogate models are also compared. The evaluation results demonstrate the different capabilities of the developed surrogate models. These capabilities lead to development of an efficient methodology for source characterization based on utilizing the trained and tested surrogate models in an inverse mode. The obtained results are satisfactory and show the potential applicability of the SOM and GPR-based surrogate models for unknown groundwater contaminant source characterization in an inverse mode.

Share and Cite:

Hazrati-Yadkoori, S. and Datta, B. (2017) Evaluation of Unknown Groundwater Contaminant Sources Characterization Efficiency under Hydrogeologic Uncertainty in an Experimental Aquifer Site by Utilizing Surrogate Models. Journal of Water Resource and Protection, 9, 1612-1633. doi: 10.4236/jwarp.2017.913101.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.