CMB—A Geometric, Lorentz Invariant Model in Non-Expanding Lobachevskian Universe with a Black Body Spectral Distribution Function

HTML  XML Download Download as PDF (Size: 654KB)  PP. 2104-2121  
DOI: 10.4236/jmp.2017.813129    738 Downloads   1,473 Views  Citations

ABSTRACT

In the present paper, based on Lobachevskian (hyperbolic) static geometry, we present (as an alternative to the existing Big Bang model of CMB) a geometric model of CMB in a Lobachevskian static universe as a homogeneous space of horospheres. It is shown that from the point of view of physics, a horosphere is an electromagnetic wavefront in Lobachevskian space. The presented model of CMB is an Lorentz invariant object, possesses observable properties of isotropy and homogeneity for all observers scattered across the Lobachevskian universe, and has a black body spectrum. The Lorentz invariance of CMB implies a mathematical equation for cosmological redshift for all z. The global picture of CMB, described solely in terms of the Lorentz group—SL(2C), is an infinite union of double sided quotient spaces (double fibration of the Lorentz group) taken over all parabolic stabilizers PSL(2C). The local picture of CMB (as seen by us from Earth) is a Grassmannian space of an infinite union all horospheres containing origin o∈L3, equivalent to a projective plane RP2. The space of electromagnetic wavefronts has a natural identification with the boundary at infinity (an absolute) of Lobachevskian universe. In this way, it is possible to regard the CMB as a reference at infinity (an absolute reference) and consequently to define an absolute motion and absolute rest with respect to CMB, viewed as an infinitely remote reference.

Share and Cite:

von Brzeski, J. and von Brzeski, V. (2017) CMB—A Geometric, Lorentz Invariant Model in Non-Expanding Lobachevskian Universe with a Black Body Spectral Distribution Function. Journal of Modern Physics, 8, 2104-2121. doi: 10.4236/jmp.2017.813129.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.