Aerodynamics and Flight Dynamics of Free-Falling Ash Seeds

HTML  XML Download Download as PDF (Size: 939KB)  PP. 105-116  
DOI: 10.4236/wjet.2017.54B012    2,022 Downloads   3,536 Views  Citations

ABSTRACT

Samaras or winged seeds spread themselves by wind. Ash seed, unlike other samaras, has a high aspect ratio wing which can generate enough lift force to slow down descent by rotating about the vertical axis and spinning around its wing span axis simultaneously. This unique kinematics and inherent fluid mechanism are definitely of great interest. Detailed kinematics of free falling ash seeds were measured using high-speed cameras, then corresponding aerodynamic forces and moments were calculated employing computational fluid dynamics. The results show that both rotating and spinning directions are in the same side and the spinning angular velocity is about 6 times of rotating speed. The terminal descending velocity and cone angles are similar to other samaras. Analysis of the forces and moments shows that the lift is enough to balance the weight and the vertical rotation results from a processional motion of total angular moment because the spin-cycle-averaged aer-odynamic moment is perpendicular to the total angular moment and can only change its direction but maintain its magnitude, which is very similar to a spinning top in processional motion except that the total angular moment of ash seed is not along the spin axis but almost normal to it. The flow structures show that both leading and trailing edge vortices contribute to lift generation and the spanwise spinning results in an augmentation of the lift, implying that ash seeds with high aspect ratio wing may evolve in a different way in utilizing fluid mechanisms to facilitate dispersal.

Share and Cite:

Fang, R. , Zhang, Y. and Liu, Y. (2017) Aerodynamics and Flight Dynamics of Free-Falling Ash Seeds. World Journal of Engineering and Technology, 5, 105-116. doi: 10.4236/wjet.2017.54B012.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.