Fish Swim Bladder-Derived Porous Carbon for Defluoridation at Potable Water pH

HTML  XML Download Download as PDF (Size: 2355KB)  PP. 500-514  
DOI: 10.4236/aces.2016.64044    1,518 Downloads   2,702 Views  Citations

ABSTRACT

The levels of fluoride in various ground water sources in East Africa are above the World Health Organization upper limit of 1.5 mg/L. Research on diverse defluoridation technologies has proven that adsorption stands out as an affordable, efficient, and facile technology. Fish swim bladder-derived porous carbon (FBPC) activated by KOH and surface oxidized by nitric acid was successfully investigated as an adsorbent for defluoridation at portable water pH. The FBPC was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). Batch methods were used to study physiochemical parameters viz., initial fluoride concentration, temperature, adsorbate dosage, contact time and pH. Freundlich, Temkin, Langmuir and Dubinin-Radushkevich isotherms were plotted and analyzed to understand the adsorption process. Bangham, Weber Morris, pseudo first and second-order models were used to elucidate the kinetics of adsorption. Optimal conditions for fluoride removal were found to be: pH of 6, FBPC adsorbent dose of 5.0 g/L and contact time of 50 min. Flouride adsorption followed pseudo second-order kinetic model and Langmuir isotherm best describes the adsorption process.

Share and Cite:

Karuga, J. , Jande, Y. , Kim, H. and King’ondu, C. (2016) Fish Swim Bladder-Derived Porous Carbon for Defluoridation at Potable Water pH. Advances in Chemical Engineering and Science, 6, 500-514. doi: 10.4236/aces.2016.64044.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.