On Switching of a Flip-Flop Jet Nozzle with Double Ports by Single-Port Control

HTML  XML Download Download as PDF (Size: 2014KB)  PP. 143-161  
DOI: 10.4236/jfcmv.2016.44013    1,711 Downloads   2,986 Views  Citations

ABSTRACT

This research deals with the oscillation mechanism of a flip-flop jet nozzle with a connecting tube, based on the measurements of pressures and velocities in the connecting tube and inside the nozzle. The measurements are carried out varying: 1) the inside diameter d of the connecting tube; 2) the length L of the connecting tube and 3) the jet velocity VPN from a primary-nozzle exit. We assume that the jet switches when a time integral reaches a certain value. At first, as the time integral, we introduce the accumulated flow work of pressure, namely, the time integral of mass flux through a connecting tube into the jet-reattaching wall from the opposite jet-un-reattaching wall. Under the assumption, the trace of pressure difference between both the ends of the connecting tube is simply modeled on the basis of measurements, and the flow velocity in the connecting tube is computed as incompressible flow. Second, in order to discuss the physics of the accumulated flow work further, we conduct another experiment in single-port control where the inflow from the control port on the jet-reattaching wall is forcibly controlled and the other control port on the opposite jet-un-reattaching wall is sealed, instead of the experiment in regular jet’s oscillation using the ordinary nozzle with two control ports in connection. As a result, it is found that the accumulated flow work is adequate to determine the dominant jet- oscillation frequency. In the experiment in single-port control, the accumulated flow work of the inflow until the jet’s switching well agrees with that in regular jet’s oscillation using the ordinary nozzle.

Share and Cite:

Inoue, T. , Nagahata, F. and Hirata, K. (2016) On Switching of a Flip-Flop Jet Nozzle with Double Ports by Single-Port Control. Journal of Flow Control, Measurement & Visualization, 4, 143-161. doi: 10.4236/jfcmv.2016.44013.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.