A Novel Approach to Reduce Handover Latency in Proxy Mobile IPv6 Based on Multi-Homing

HTML  XML Download Download as PDF (Size: 2333KB)  PP. 2530-2541  
DOI: 10.4236/cs.2016.79219    1,424 Downloads   2,603 Views  Citations

ABSTRACT

Proxy Mobile IPv6 (PMIPv6) is a network based mobility management protocol. It is proposed by the Internet Engineering Task Force. In PMIPv6 the Mobile Node (MN) need not participate in signalling of mobility. PMIPv6 is a layer 3 protocol. In this paper the issue of layer 3 mobility is resolved by the Enhanced Open Flow Technique (EOFT). Generally, the open flow protocol makes functions on network devices, routers, switches. Open flow controller act as server for network devices to make communication between them. In the proposed EOFT-PMIPv6, the control signalling and mobility is managed by EOFT controller. In PMIPv6, the Mobility Access gateway (MAG) has the responsibility of the control signalling. But in the EOFT-PMIPv6, the responsibility of MAG is done by the EOFT-Controller. In the proposed technique, the mobility management function is isolated from PMIPv6 mechanisms. These isolated mechanisms are combined in the EOFT-Con- troller. This EOFT-Controller satisfies the responsibility of the mechanisms which are separated from PMIPv6. The eminent mobile environment must provide the efficient multi-homing protocols. The proposed technique overcomes the problem of multihoming in PMIPv6. The EOFT-Controller takeover the responsibility of Layer 3 functions. Also, the proposed technique combines with Modified Mobility Access Gateway (M_MAG) and it handles the handover session dynamically. This paper provides the extended architecture of EOFT-PMIPv6 and provide unbeaten handover scheme for multi-homing. The result is provided by systematic analysis based on comparison with PMIPv6 and EOFT-PMIPv6 is obtained.

Share and Cite:

Krishnan, I. and Davidson, S. (2016) A Novel Approach to Reduce Handover Latency in Proxy Mobile IPv6 Based on Multi-Homing. Circuits and Systems, 7, 2530-2541. doi: 10.4236/cs.2016.79219.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.