Physical Mathematical Evaluation of the Cardiac Dynamic Applying the Zipf-Mandelbrot Law

HTML  XML Download Download as PDF (Size: 516KB)  PP. 1881-1888  
DOI: 10.4236/jmp.2015.613193    3,582 Downloads   4,803 Views  Citations

ABSTRACT

Introduction: The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages. A mathematical diagnosis of fetal cardiac dynamics has been developed with this law. Objective: To develop a methodology for diagnostic aid to assess the degree of complexity of adult cardiac dynamics by Zipf-Mandelbrot law. Methodology: A mathematical induction was done for this; two groups of Holter recordings were selected: 11 with normal diagnosis and 11 with acute disease of each group, one Holter of each group was chosen for the induction, the law of Zipf-Mandelbrot was applied to evaluate the degree of complexity of each Holter, searching similarities or differences between the dynamics. A blind study was done with 20 Holters calculating sensitivity, specificity and the coefficient kappa. Results: The complexity grade of a normal cardiac dynamics varied between 0.9483 and 0.7046, and for an acute dynamic between 0.6707 and 0.4228. Conclusions: A new physical mathematical methodology for diagnostic aid was developed; it showed that the degree of complexity of normal cardiac dynamics was higher than those with acute disease, showing quantitatively how cardiac dynamics can evolve to acute state.

Share and Cite:

Rodríguez, J. , Prieto, S. , Correa, S. , Mendoza, F. , Weiz, G. , Soracipa, M. , Velásquez, N. , Pardo, J. , Martínez, M. and Barrios, F. (2015) Physical Mathematical Evaluation of the Cardiac Dynamic Applying the Zipf-Mandelbrot Law. Journal of Modern Physics, 6, 1881-1888. doi: 10.4236/jmp.2015.613193.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.