Aceclofenac-Soluplus® Nanocomposites for Increased Bioavailability

HTML  XML Download Download as PDF (Size: 794KB)  PP. 13-20  
DOI: 10.4236/snl.2015.52003    5,639 Downloads   7,432 Views  Citations

ABSTRACT

Aceclofenac is a new generational Non-Steroidal Anti-Inflammatory Drug (NSAID), and is considered a better alternative to the popular pain-killer diclofenac, as it overcomes some of the adverse gastrointestinal and cardiac side effects associated with the latter. However, the bioavailability of the drug remains limited due to low aqueous solubility (0.058 μg/mL) and poor dissolution characteristics. Hence, improving its dissolution characteristics is of prime significance in order to establish its optimal therapeutic efficacy. In an effort to tackle this issue, we report the use of novel Soluplus®-based nanocomposites, prepared from emulsion templates, as effective drug loading agent for aceclofenac. Nanoemulsion templates were prepared by high-shear homogenization using a probe sonicator. The emulsions were subsequently lyophilized to obtain free flowing powders. The amorphization of the drug with increasing polymer content was clearly observed from powder X-ray diffractogram, while the drug-polymer interaction was explored by FTIR spectroscopy. The phase purity and homogeneity of the formulation was characterized using Differential Scanning Calorimetry. The dissolution profiles of the formulations were established by an USP paddle apparatus. Phase solubility study was conducted to evaluate the effect of polymer concentration on aqueous solubility of aceclofenac. The values of Gibbs-free energy (ΔG°tr) associated with the aqueous solubility of aceclofenac in the presence of Soluplus was used to optimize the polymer content. The in vitro dissolution rates of aceclofenac from the nanoparticles were significantly higher compared to the pure drug. Thus, Soluplus nanoparticles provide promising formulations for the improvement of the dissolution profiles and thus, the bioavailability, of aceclofenac.

Share and Cite:

Patnaik, S. , Aditha, S. , Rattan, T. and Kamisetti, V. (2015) Aceclofenac-Soluplus® Nanocomposites for Increased Bioavailability. Soft Nanoscience Letters, 5, 13-20. doi: 10.4236/snl.2015.52003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.