Share This Article:

Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material

Full-Text HTML XML Download Download as PDF (Size:3422KB) PP. 202-215
DOI: 10.4236/ajac.2015.63019    2,360 Downloads   2,795 Views Citations

ABSTRACT

The nacrite-LiCl hybrid composite material was prepared at room temperature by indirect inter-calation of lithium chloride between the planar layers of nacrite, a clay mineral, using acetone as a solvent. The structural identification of the hybrid clay material was determined by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infrared spectroscopy (IR). The qualitative XRD analysis showed that the basal spacing value increased from 0.72 nm to 1.14 nm and revealed that the alkali halide intercalated successfully in the interlayer space of the nacrite framework. The quantitative XRD analysis allowed us to determine the optimum structural parameters related to the position and number of keyed ions and water molecules per half unit cell calculated along the c* axis and the goodness of fit parameter (Rp). The thermal properties of the elaborated hybrid were in great accordance with the XRD study and confirm the intercalation of the hydrated salt in the interlamellar space of nacrite. Moreover, IR spectroscopy enabled the study of the interactions between the silicate ‘‘networks’’ and the alkali halide.

Cite this paper

Jaafar, N. , Naamen, S. , Rhaiem, H. and Amara, A. (2015) Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material. American Journal of Analytical Chemistry, 6, 202-215. doi: 10.4236/ajac.2015.63019.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.