Low Pressure Chemical Vapor Deposition of TiO2 Layer in Hydrogen-Ambient

HTML  XML Download Download as PDF (Size: 3061KB)  PP. 185-192  
DOI: 10.4236/jcpt.2014.44023    4,831 Downloads   6,581 Views  Citations

ABSTRACT

Low pressure chemical vapor deposition (LPCVD) of anatase TiO2 as a reduction gas was demonstrated at pres- sure of 3 mtorr in comparison to that using TTIP and O2 with study for the property of the layers. Dissociation energy of TTIP in H2 was higher than that in O2 but resistivity of the layer deposited in H2 was significantly decreased to 0.2 Ω cm in contrast to the high resistivity beyond 100 Ω cm of the layer deposited in O2. UV-Vis optical transmission spectra showed absorption around 2.2 eV was increased in the layer deposited by TTIP + H2 in addition to decrease of forbidden energy gap due to increase of Urbach tail. Resistivity at low temperature below 100 K indicating the layer deposited in H2-ambient was degenerated by the high electron density but the resistivity was decreased with temperature above 100 K with the activation energy about 100 meV. A possible electronic conduction model based on kernel, grain boundary and surface trap to clarify the temperature dependent resistivity suggesting resistivity of the layer was limited by depletion region in the grain-boundary extended from the surface and the kernel with significantly low resistivity in 10-3 Ω cm order was formed in the layer.

Share and Cite:

Yamauchi, S. , Ishibashi, K. and Hatakeyama, S. (2014) Low Pressure Chemical Vapor Deposition of TiO2 Layer in Hydrogen-Ambient. Journal of Crystallization Process and Technology, 4, 185-192. doi: 10.4236/jcpt.2014.44023.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.