Investigation by AES, EELS and TRIM Simulation Method of InP(100) Subjected to He+ and H+ Ions Bombardment

HTML  Download Download as PDF (Size: 547KB)  PP. 421-426  
DOI: 10.4236/msa.2011.25055    4,889 Downloads   8,611 Views  Citations

Affiliation(s)

.

ABSTRACT

Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS) have been performed in order to investigate the InP(100) surface subjected to ions bombardment. The InP(100) surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV) indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500 V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter) simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.

Share and Cite:

M. Ghaffour, A. Abdellaoui, A. Ouerdane, M. Bouslama and C. Jardin, "Investigation by AES, EELS and TRIM Simulation Method of InP(100) Subjected to He+ and H+ Ions Bombardment," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 421-426. doi: 10.4236/msa.2011.25055.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.