Share This Article:

The Case of Nonzero Initial Conditions in the Evolution of the Charge Density Distribution Function for a Spherically Symmetric System

Full-Text HTML XML Download Download as PDF (Size:5721KB) PP. 495-502
DOI: 10.4236/jamp.2014.27057    3,889 Downloads   4,474 Views Citations

ABSTRACT

We explored the Cauchy problem for the evolution of the charge density distribution function for a spherically symmetric system with nonzero initial conditions. In our model, the evolution of the charge density distribution function is simulated for the case of a non-uniform charged sphere. The initial speed of the system is nonzero. The solution breaks down into two components: the first one describes the system’s motion as a whole and the second describes the process of the evolution of the charge density function under the influence of its own electric field in the center-of-mass system. In this paper we considered the characteristic features of the implementation of a difference scheme for numerical simulation. We also illustrate the process of “scattering” of a moving charged system under the influence of its own electric field on the basis of the solution of the Cauchy problem for vector functions of the electric field and vector velocity field of a charged medium.

Cite this paper

Sadovnikov, B. and Zhavoronkov, A. (2014) The Case of Nonzero Initial Conditions in the Evolution of the Charge Density Distribution Function for a Spherically Symmetric System. Journal of Applied Mathematics and Physics, 2, 495-502. doi: 10.4236/jamp.2014.27057.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.