Modelling Open Channel Flows with Vegetation Using a Three-Dimensional Model

HTML  Download Download as PDF (Size: 194KB)  PP. 114-119  
DOI: 10.4236/jwarp.2011.32013    6,868 Downloads   12,897 Views  Citations

Affiliation(s)

.

ABSTRACT

The effects of vegetation on the flow structure are investigated in this paper. In previous studies of modelling vegetated flows, two-equation turbulence models, such as the model, were often used. However, this approach involves a level of uncertainty since the empirical coefficients in these two equations have not yet been satisfactorily obtained for such flow conditions. In addition to this, two extra partial differential equations needing which will result in an increase in the computational cost. The main purpose of the study was therefore to try and acquire accurate velocity profiles without the more advanced two-equation turbulence models. A three-dimensional model using a simple two layer mixing length model was therefore used. The governing hydrodynamic equations were refined to include the effects of drag force induced by vegetation on the flow structure. The model was applied to an experiment flume to study the flow field with vegetations, where experiment data are available. Distributions predicted by the model were compared with laboratory measured ones, with very good agreements being obtained. The results showed that the simple mixing length model could produce accurate complex velocity profile predictions requiring fewer coefficient data and less computation.

Share and Cite:

G. Gao, R. Falconer and B. Lin, "Modelling Open Channel Flows with Vegetation Using a Three-Dimensional Model," Journal of Water Resource and Protection, Vol. 3 No. 2, 2011, pp. 114-119. doi: 10.4236/jwarp.2011.32013.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.