Molecular Modeling of Cell Adhesion Peptides on Hydroxyapatite and TiO2 Surfaces: Implication in Biomedical Implant Devices

HTML  Download Download as PDF (Size: 249KB)  PP. 351-356  
DOI: 10.4236/jbnb.2013.44044    4,532 Downloads   6,675 Views  Citations

ABSTRACT

Molecular modeling as a tool in studying peptide-substrate interactions provides insight on peptide adsorption conformation, adsorption energy, and stability of the peptide-inorganic interface. This work investigates the hydration and interaction of cell-adhesion peptides, specifically RGD and YIGSR, with the hydroxyapatite surface and TiO2 surface in cluster and periodic boundary condition approaches. The comparison of adsorption energies of RGD and YIGSR on both Hydroxyapatite (HA) and TiO2 surfaces reveals the similarities in adsorption energy and orientation pattern of peptides on both surfaces. The models demonstrate that initial peptide orientation affects adsorption energy for both. YIGSR is consistently more strongly adsorbed to HA-(001) surfaces and steps than RGD for both the surfaces. In addition, RGD maintained its “hairpin”-like structure during adsorption on a flat HA-(001) surface, and a slightly “relaxed hairpin” structure on TiO2 (110) surface. Adsorption energies of RGD on TiO2 (110) surface are significantly more favorable compared to HA-(001) surface, suggesting potential role of TiO2 as biomedical implants when tissue regeneration occurs via cell signaling.

Share and Cite:

S. Biswas and U. Becker, "Molecular Modeling of Cell Adhesion Peptides on Hydroxyapatite and TiO2 Surfaces: Implication in Biomedical Implant Devices," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 4, 2013, pp. 351-356. doi: 10.4236/jbnb.2013.44044.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.