Analytical and Experimental Studies of Liquid and Gas Leaks through Micro and Nano-Porous Gaskets

HTML  Download Download as PDF (Size: 879KB)  PP. 32-42  
DOI: 10.4236/msa.2013.48A004    5,364 Downloads   7,732 Views  Citations

ABSTRACT

The reliability of industrial installation requires minimum leakage of pressurized sealed joints during operation. At the design stage, the leakage behavior of the gasket must be one of the most important parameter in the gasket selection. The objective of the work presented in this paper is to develop an analytical leak rate prediction methodology used in gasketed joints. A pseudo analytical-experimental innovative approach was used to estimate the characteristics of the porous structure for the purpose of predicting accurate leak rate through gaskets with different fluids under conditions similar to those of operation. The analytical model assumes the flow to be continuum but employs a slip boundary condition on the leak path wall to determine the porosity parameters of the gasket. The analytical model results are validated and confronted against experimental data which were conducted under various conditions of fluid media, pressure, gasket stress and temperature. Two experimental test rigs fully automate that accurately reproduces the real leakage behavior of the gasketed joint have been developed to analyze the mechanical and thermal effects on the gasket flow regime. The gas leaks were measured with multi-gas mass spectrometers while liquid leaks were measure using a sophisticated detection system based on the pressure rise method.

Share and Cite:

L. Grine and A. Bouzid, "Analytical and Experimental Studies of Liquid and Gas Leaks through Micro and Nano-Porous Gaskets," Materials Sciences and Applications, Vol. 4 No. 8A, 2013, pp. 32-42. doi: 10.4236/msa.2013.48A004.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.