Single Measurement of Figures

HTML  XML Download Download as PDF (Size: 194KB)  PP. 812-817  
DOI: 10.4236/jmp.2013.46111    3,283 Downloads   4,576 Views  Citations
Author(s)

ABSTRACT

We introduce a new approach in dealing with pattern recognition issue. Recognizing a pattern is definitely not the exploration of a new discovery but rather the search for already known patterns. In reading for example the same text written in a hand writing, letters can appear in different shapes. Still, the text decoding corresponds with interpreting the large variety of hand writings shapes with fonts. Quantum mechanics also offer a kind of interpretation tool. Although, with the superposition principle it is possible to compose an infinite number of states, yet, an observer by conducting a measurement reduces the number of observed states into the predetermined basis states. Not only that any state collapses into one of the basis states, quantum mechanics also possesses a kind of correction mechanism in a sense that if the measured state is close enough to one of the basis states, it will collapse with high probability into this predetermined state. Thus, we can consider the collapse mechanism as a reliable way for the observer to interpret reality into his frame of concepts. Both interpretation ideas, pattern recognition and quantum measurement are integrated in this paper to formulate a quantum pattern recognition measuring procedure.

Share and Cite:

Y. Roth, "Single Measurement of Figures," Journal of Modern Physics, Vol. 4 No. 6, 2013, pp. 812-817. doi: 10.4236/jmp.2013.46111.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.