Effect of Calcium and Strontium on Mesoporous Titania Coatings for Implant Applications

HTML  XML Download Download as PDF (Size: 2279KB)  PP. 107-113  
DOI: 10.4236/jbnb.2013.42014    4,833 Downloads   7,044 Views  Citations

ABSTRACT

Increasing interest in the role of ions such as calcium and strontium in bone formation has called for the investigation of multifunctional ion-doped implant coatings. Mesoporous titania coatings incorporating calcium or strontium enabled a unique pore morphology and potential for drug delivery. Coatings were produced on titanium by an evaporation induced self-assembly method with the addition of calcium or strontium to the sol causing a shift in morphology from a hexagonally-packed to a worm-like porous network. Pore sizes ranged from 3.8 - 5 nm and coatings exhibited high surface areas between 181 - 215.5 m2/g, as measured by N2 adsorption-desorption. Coatings were loaded with 1 mg/ml Cephalothin, and showed sustained release of the antibiotic over one week in vitro. Cell studies confirmed that the ion addition had no toxic effect on human-like osteoblastic SaOS-2 cells. The results of this study suggest the potential for mesoporous coatings with calcium or strontium incorporation for direct bone-interfacing and combined drug delivery implant applications.

Share and Cite:

K. Grandfield, S. Pujari, M. Ott, H. Engqvist and W. Xia, "Effect of Calcium and Strontium on Mesoporous Titania Coatings for Implant Applications," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 107-113. doi: 10.4236/jbnb.2013.42014.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.