Share This Article:

Detecting Global Influential Observations in Liu Regression Model

Full-Text HTML XML Download Download as PDF (Size:188KB) PP. 5-11
DOI: 10.4236/ojs.2013.31002    12,368 Downloads   30,401 Views Citations
Author(s)

ABSTRACT

In linear regression analysis, detecting anomalous observations is an important step for model building process. Various influential measures based on different motivational arguments and designed to measure the influence of observations on different aspects of various regression results are elucidated and critiqued. The presence of influential observations in the data is complicated by the presence of multicollinearity. In this paper, when Liu estimator is used to mitigate the effects of multicollinearity the influence of some observations can be drastically modified. Approximate deletion formulas for the detection of influential points are proposed for Liu estimator. Two real macroeconomic data sets are used to illustrate the methodologies proposed in this paper.

Cite this paper

A. Jahufer, "Detecting Global Influential Observations in Liu Regression Model," Open Journal of Statistics, Vol. 3 No. 1, 2013, pp. 5-11. doi: 10.4236/ojs.2013.31002.

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.