Numerical Study on Application of CuO-Water Nanofluid in Automotive Diesel Engine Radiator

HTML  Download Download as PDF (Size: 1227KB)  PP. 130-136  
DOI: 10.4236/mme.2012.24017    8,813 Downloads   17,406 Views  Citations

ABSTRACT

Application of CuO-water nanofluid with size of the nanoparticles of 20 nm and volume concentrations up 2% is numerically investigated in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions. The heat transfer relations between airflow and nanofluid coolant have been obtained to evaluate local convective and overall heat transfer coefficients and also pumping power for nanofluid flowing in the radiator with a given heat exchange capacity. In the present study, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. The results show that for CuO-water nanofluid at 2% volume concentration circulating through the flat tubes with Renf = 6000 while the automotive speed is 70 km/hr, the overall heat transfer coefficient and pumping power are approximately 10% and 23.8% more than that of base fluid for given conditions, respectively.

Share and Cite:

N. Bozorgan, K. Krishnakumar and N. Bozorgan, "Numerical Study on Application of CuO-Water Nanofluid in Automotive Diesel Engine Radiator," Modern Mechanical Engineering, Vol. 2 No. 4, 2012, pp. 130-136. doi: 10.4236/mme.2012.24017.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.