Next Frontier in Physics—Space as a Complex Tension Field

HTML  Download Download as PDF (Size: 439KB)  PP. 1357-1368  
DOI: 10.4236/jmp.2012.310173    3,928 Downloads   6,541 Views  Citations

ABSTRACT

We hypothesize that 100% of the energy of our cosmic system is held by a physically real Complex Tension Field (CTF). We are using an old methodology of thinking used by our forefather engineers long before the advent of modern scientific thinking. We call it Interaction Process Mapping Epistemology or IPM-E. We apply this IPM-E on to the prevailing Measurable Data Modeling Epistemology or MDM-E. This approach helped us analyze the “Measurement Problem”, recognized during the rise of quantum mechanics (QM), and helped us recover a universal property of all linear waves, that they do not interact, or interfere, with each other. This Non-Interaction of Waves, or the NIW-property, should be obvious through daily observations and through the Huygens-Fresnel diffraction integral and through critical evaluation of contradictory hypotheses we have been assigning to photons through ages. This implicates that the time-frequency Fourier theorem, although mathematically correct, and is used universally in all branches of science; does not map the real physical interaction processes for most optical phenomena. Accordingly, we present the necessary modifications for a few selected phenomena in classical and quantum optics to validate the NIW-property. In the process we find that accepting photons as non-interacting, but diffractively propagating linear wave packets crossing the entire cosmic space, requires CTF as a physical medium. Then we develop logical arguments in support of stable elementary particles as nonlinear but resonant vortex-like undulations of this same CTF. These vortex-like particles impose various secondary potential gradients around themselves giving rise to the four forces we know. Thus, CTF can serve as the cosmic substrate to develop a unified field theory without the need of dark matter and dark energy. In the process, we demonstrate a path to add ontologic thinking on our biologically successful epistemic thinking.

Share and Cite:

C. Roychoudhuri, "Next Frontier in Physics—Space as a Complex Tension Field," Journal of Modern Physics, Vol. 3 No. 10, 2012, pp. 1357-1368. doi: 10.4236/jmp.2012.310173.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.