The effect of cartilaginous rings on particle deposition by convection and Brownian diffusion

Download Download as PDF (Size: 630KB)  PP. 769-779  
DOI: 10.4236/ns.2010.27097    4,129 Downloads   8,281 Views  Citations

Affiliation(s)

.

ABSTRACT

The deposition of spherical nanoparticles by convection and Brownian diffusion in a pipe with a cartilaginous ring structure is studied. Analytical results for a fully developed flow are found for small amplitude rings using the interactive boundary layer theory. It is found that the local deposition rate is at maximum at a position approximately one twelfth of the spacing between the rings before the minimum cross section of the tube. For larger ring amplitudes the problem is solved numerically and separation then takes place in the depressions between the rings, and maximum deposition is found at the point of reattachment of the flow approximately at the same point as in the analytical theory. Cumulative deposition results are also provided with larger deposition rates with the inclusion of the cartilaginous rings. Deposition results for a developing flow are also provided. For the same volume flux as for fully developed flow the deposition is about 25% larger. In general conclusions about the position of maximum deposition rate from the analytic theory of fully developed flow also applies qualitatively to the case of developing flow.

Share and Cite:

Åkerstedt, H. , Högberg, S. , Lundström, T. and Sandström, T. (2010) The effect of cartilaginous rings on particle deposition by convection and Brownian diffusion. Natural Science, 2, 769-779. doi: 10.4236/ns.2010.27097.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.