Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delivery

HTML  Download Download as PDF (Size: 768KB)  PP. 391-395  
DOI: 10.4236/jbnb.2012.33038    6,838 Downloads   12,043 Views  Citations

ABSTRACT

The objective of this study is to utilize the pH sensitivity of modified silica nanoparticles (SNIL) by imidazole-based ionic liquid for oral delivery of insulin. In the first time, the imidazole was covalently attached to the 3-trimethoxysily-lpropyl chloride with replacement of all the chlorine atoms. Then, a silica nanoparticle was modified by N-(3-trimeth-oxysilylpropyl) imidazole. The nanocapsule (NCIL) was achieved after the etching of the modified silica nanoparticle template with hydrofluoric acid. The nanoparticles connected through an ionic liquid-like network were characterized by FTIR and SEM. Insulin was entrapped in these carriers and the in vitro release profiles were established separately in both enzyme-free simulated gastric and intestinal fluids (SGF, pH 1) and (SIF, pH 7.4), respectively. When these drug-loaded nanoparticles was placed in physiological buffer solution (pH 7.4), a partial negative surface charge on the modified silica nanoparticle was generated due to the deprotonation of silanol groups, and the strong electrostatic repulsion triggered a sustained release of the loaded molecules.

Share and Cite:

M. Mahkam, F. Hosseinzadeh and M. Galehassadi, "Preparation of Ionic Liquid Functionalized Silica Nanoparticles for Oral Drug Delivery," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 3, 2012, pp. 391-395. doi: 10.4236/jbnb.2012.33038.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.