Reduction of Beta-Lactam Antimicrobial Activity in Staphylococcus aureus Abscesses by Neutrophil Alteration of Penicillin-Binding Protein 2

HTML  XML Download Download as PDF (Size: 480KB)  PP. 48-52  
DOI: 10.4236/aid.2012.22007    3,594 Downloads   6,948 Views  

ABSTRACT

We previously demonstrated that brief nonkilling neutrophil exposure diminishes the binding affinity of S. aureus penicillin-binding protein (PBP) 2. We sought to investigate further the role of the neutrophil in the alteration of antimicrobial activity and its interaction with PBP-2 by studying the activity of cefotaxime, which highly binds to PBP 2, and cephalexin, which minimally binds to PBP 2. Using S. aureus, cultured in vitro in sterile-filtered normal and neutrophil depleted abscess fluid, we sought to demonstrate an in vivo significance of the neutrophil effect upon the activity of antimicrobials that target PBP-2 by studying the same antimicrobials in an experimental S. aureus abscess. Rats were implanted with perforated tissue cages and infected with S. aureus; some rats were neutrophil depleted by mechlorethamine. Abscess fluids from normal and neutropenic abscesses were harvested, pooled, sterile-filtered and stored for the time-kill studies. Treatment studies were performed by administering either 300 μg/kg/d cefotaxime or cephalexin for 7 days in other rats with 24 hour-old tissue-cage S. aureus abscesses. In time-kill studies, cefotaxime was highly active against stationary phase S. aureus in MHB and in neutropenic abscess fluid, but less active in the non-neutropenic abscess fluid (p < 0.05 compared to neutropenic abscess fluid). Cephalexin was equally active in neutropenic and non-noneutropenic abscess fluids, and more active than cefotaxime in the abscess model after 7 days of therapy (2.1 ± 1.7 log10 kill, p = 0.029 vs. 0.81 ± 2.5, p = NS). These data suggest that neutrophil exposure, which diminishes S. aureus PBP-2 binding affinity [or total quantity], also adversely affects the antimicrobial activity of cefotaxime, which binds to PBP-2, as compared to cephalexin. Altered PBP targets from neutrophil exposure may be a mechanism of antimicrobial resistance within abscesses.

Share and Cite:

D. M. Bamberger, M. Goers, T. Quinn and B. Herndon, "Reduction of Beta-Lactam Antimicrobial Activity in Staphylococcus aureus Abscesses by Neutrophil Alteration of Penicillin-Binding Protein 2," Advances in Infectious Diseases, Vol. 2 No. 2, 2012, pp. 48-52. doi: 10.4236/aid.2012.22007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.