Capacitive Properties of Mesoporous Mn-Co Oxide Derived from a Mixed Oxalate

HTML  XML Download Download as PDF (Size: 738KB)  PP. 377-383  
DOI: 10.4236/msa.2012.36054    4,922 Downloads   9,219 Views  Citations

ABSTRACT

A mesoporous Mn-Co oxide for supercapacitors was derived from a mixed oxalate Mn0.8Co0.2C2O4·nH2O, which was synthesized by a solid-state coordination reaction at room temperature. The synthesized mixed Mn-Co oxalate was decomposed in air at 250°C, resulting in a tetragonal spinel Mn-Co oxide with a primary particle size less than 100 nm. The obtained Mn-Co oxide presents a mesoporous texture with a specific surface area of 120 m2·g﹣1. Electrochemical properties of the Mn-Co oxide electrode were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol·L﹣1 KOH electrolyte. The Mn-Co oxide electrode delivered specific capacitances of 383 and 225 F·g﹣1 at scan rates of 2 and 50 mV·s﹣1, respectively. Subjected to 500 cycles at a current density of 1.34 A·g﹣1, the symmetrical Mn-Co oxide capacitor showed specific capacitance of 179 F·g﹣1, still retaining ~85% of its initial capacitance. The obtained Mn-Co oxide material showed good capacitive performance, which was promising for supercapacitor applications.

Share and Cite:

Y. Yan, B. Wu, C. Zheng and D. Fang, "Capacitive Properties of Mesoporous Mn-Co Oxide Derived from a Mixed Oxalate," Materials Sciences and Applications, Vol. 3 No. 6, 2012, pp. 377-383. doi: 10.4236/msa.2012.36054.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.