Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods

HTML  Download Download as PDF (Size: 766KB)  PP. 64-71  
DOI: 10.4236/jcpt.2012.22009    4,233 Downloads   8,233 Views  Citations

ABSTRACT

Alloys of Se80-xTe20Inx glassy system are obtained by quenching technique and crystallization kinetics has been studied using Differential Scanning Calorimetric [DSC] technique. Well defined endothermic and exothermic peaks are ob- served at glass transition temperature (Tg) and crystallization temperature (Tc). From DSC scans, Tc is obtained at dif- ferent heating rates (5, 10, 15, 20, 25 K/min). It is observed that Tc increases with increasing heating rate for a particular glassy alloy. Activation energy of crystallization (Ec) has been calculated by different Non-isothermal Iso-conversional methods, i.e., Kissinger-Akahira-Sunose [KAS], Friedman, Flynn-wall-Ozawa [FWO], Friedman-Ozawa [FO] and Sta-rink methods. It is observed that Ec is dependent on extent of crystallization (α). Activation energy is also found to vary with atomic percentage of In in ternary Se80-xTe20Inx glassy system. The compositional dependence of Ec shows a re-versal in the trend at x = 15 in Se80-xTe20Inx, which is explained in terms of mechanically stabilized structure at this composition.

Share and Cite:

R. Shukla, P. Agarwal and A. Kumar, "Thermal Characterization of Se80-xTe20Inx Glasses Using Iso-Conversional Methods," Journal of Crystallization Process and Technology, Vol. 2 No. 2, 2012, pp. 64-71. doi: 10.4236/jcpt.2012.22009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.