Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits
Parmjit S. Panesar
.
DOI: 10.4236/fns.2011.21006   PDF    HTML     28,801 Downloads   59,718 Views   Citations

Abstract

Fermented dairy products have long been an important component of nutritional diet. Historically, fermentation proc-ess involved unpredictable and slow souring of milk caused by the organisms inherently present in milk. However, modern microbiological processes have resulted in the production of different fermented milk products of higher nutri-tional value under controlled conditions. These products represent an important component of functional foods, and intense research efforts are under way to develop dairy products into which probiotic organisms are incorporated to make them more valuable. This article provides an overview of the different starter cultures and health benefits of fer-mented dairy products, which can be derived by the consumers through their regular intake.

Share and Cite:

P. Panesar, "Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits," Food and Nutrition Sciences, Vol. 2 No. 1, 2011, pp. 47-51. doi: 10.4236/fns.2011.21006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. N. Gandhi, “Fermented Dairy Products and Their Role in Controlling Food Borne Diseases” In: S. S. Marwaha and J. K. Arora, Eds., Food Processing: Biotechnological Applications, Asiatech Publishers Inc., New Delhi, 2000, pp. 209-220.
[2] C. Stanton, G. Gardiner, H. Meehan, K. Collins, G. Fitzgerald, P. B. Lynch and R. P. Ross, “Market Potential for Probiotics,” American Journal of Clinical Nutrition, Vol. 73, No. 2, 2001, pp. 476S-483S.
[3] H. Korhonen and A. Pihlanto, “Bioactive Peptides: Production and functionality,” International Dairy Journal, Vol. 16, No. 9, 2006, pp. 945-960. doi:10.1016/j.idairyj.2005.10.012
[4] M. Aguirre and M. D. Collins, “Lactic Acid Bacteria and Human Clinical Infection,” Journal of Applied Bacteriology, Vol. 75, No. 2, 1993, pp. 95-107.
[5] K. J. Heller, “Probiotic Bacteria in Fermented Foods: Product Characteristics and Starter Organisms,” American Journal of Clinical Nutrition, Vol. 73, No. 2, 2001, pp. 374S-379S.
[6] P. S. Panesar, R. Panesar, R. S. Singh, J. F. Kennedy and H. Kumar, “Microbial Production, Immobilization and Applications of ?-D-Galactosidase,” Journal of Chemical Technology and Biotechnology, Vol. 81, No. 4, 2006, pp. 530-543. doi:10.1002/jctb.1453
[7] S. E. Gilliland, “Influence of Bacterial Starter Cultures on Nutritional Value of Foods: Improvement of Lactose Digestion by Consuming Foods Containing Lactobacilli,” Cultured Dairy Products Journal, Vol. 20, No. 2, 1985, pp. 28-33.
[8] P. S. Panesar, G. Kaur, R. Panesar and M. B. Bera, “Synbiotics: Potential Dietary Supplements in Functional Foods,” FST Bulletin, Food Science Central, IFIS Publishing, UK, April, 2009. http://www.foodsciencecentral.com/fsc/ixid15649
[9] A. Hosono, T. Kashina and T. Kada, “Antimutagenic Properties of Lactic Acid Cultured Milk on Chemical and Faecal Mutagens,” Journal of Dairy Science, Vol. 69, No. 9, 1986, pp. 2237-2242. doi:10.3168/jds.S0022-0302(86)80662-2
[10] K. K. Grunewald, “Serum Cholesterol Levels in Rats Fed Skim Milk Fermented by Lactobacillus Acidophilus,” Journal of Food Science, Vol. 47, No. 6, 1992, pp. 2078-2079. doi:10.1111/j.1365-2621.1982.tb12955.x
[11] T. Ogawa, R. Hirai, H. Nakakuni, Y. Sato, S. Wakisaka, M. Tachibana, H. Tominaga, M. Kurata and K. Matsubayashi, “Clinical Experience with the Use of the High Concentration Lactic Acid Bacteria Preparation LP-201 to Treat Constipation,” Clinical Report, Vol. 8, 1974, pp. 1085-1092.
[12] M. Maeno, N. Yamamoto and T. Takano, “Identification of an Antihypertensive Peptide from Casein Hydrolysate Produced by a Proteinase from L. helveticus CP790,” Journal of Dairy Science, Vol. 79, No. 8, 1996, pp. 1316-1321. doi:10.3168/jds.S0022-0302(96)76487-1
[13] P. V. Kirjavainen, S. J. Salminen and E. Isolauri, “Probiotic Bacteria in the Management of Atopic Disease Underscoring the Importance of Viability,” Journal of Pediatric Gastroenterology and Nutrition, Vol. 36, No. 2, 2003, pp. 223-227. doi:10.1097/00005176-200302000-00012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.