Characterization of Porosity in a Laser Sintered MMCp Using X-Ray Synchrotron Phase Contrast Microtomography

Abstract

Direct Laser Sintering (DSL), a technology enabling the production of dense metal components directly from 3D CAD data, was used for the first time to produce a Metal Matrix Composite (MMCp) based on Al-Si-Cu alloy in view of its application in different fields, in particular for aeronautics. The porosity of the material obtained so was investigated by using optical and electron microscopy and, in particular, X-ray computed microtomography techniques. DSL is a unique technique to produce complex components in an economical way while computed microtomography is a unique technique to evaluate the porosity and pore and cracks distribution in a not destructive way. A near homogeneous distribution of the porosity and pore sizes was observed both comparing different regions of the same specimen and also by comparing different samples obtained by using the same DLS production method. A quantitative analysis of the damage in the composite is also reported.

Share and Cite:

E. Girardin, C. Renghini, J. Dyson, V. Calbucci, F. Moroncini and G. Albertini, "Characterization of Porosity in a Laser Sintered MMCp Using X-Ray Synchrotron Phase Contrast Microtomography," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1322-1330. doi: 10.4236/msa.2011.29180.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Tang, H. T. Loh, Y. S. Wong, J. Y. H. Fuh, L. Lu and X. Wang, “Direct Laser Sintering of a Copper-Based Alloy for Creating Three-Dimensional Metal Parts,” Journal of Materials Processing Technology, Vol. 140, No. 1-3, 2003, pp. 368-372. doi:10.1016/S0924-0136(03)00766-0
[2] A. Simchi and H. Pohl, “Direct Laser Sintering of Iron- Graphite Powder Mixture,” Materials Science and Engineering A, Vol. 383, No. 2, 2004, pp. 191-200. doi:10.1016/j.msea.2004.05.070
[3] Y. Tang, J. Y. H. Fuh, H. T. Loh, Y. S. Wong and L. Lu, “Direct Laser Sintering of a Silica Sand,” Materials and Design, Vol. 24, No. 8, 2003, pp. 623-629. doi:10.1016/S0261-3069(03)00126-2
[4] D. D. Gu, and Y. F. Shen, “Influence of Phosphorus Element on Direct Laser Sintering of Multicomponent Cu- Based Metal Powder,” Metallurgical and Materials Transactions B, Vol. 37B, No. 6, 2006, pp. 967-977. doi:10.1007/BF02735019
[5] A. Simchi, “The Role of Particle Size on the Laser Sintering of Iron Powder,” Metallurgical and Materials Transactions B, Vol. 35B, No. 5, 2004, pp. 937-948. doi:10.1007/s11663-004-0088-3
[6] T. Traini, C. Mangano, R. L. Sammons, Mangano, A. Macchi and A. Piattelli, “Direct Laser Metal Sintering as a New Approach to Fabrication of an Isoelastic Functionally Graded Material for Manufacture of Porous Titanium Dental Implants,” Dental Materials, Vol. 24, No. 11, 2008, pp. 1525-1533. doi:10.1016/j.dental.2008.03.029
[7] L. Sabadin Bertol, W. Kindlein Júnior, F. Pinto da Silva and C. Aumund-Kopp, “Medical Design: Direct Metal Laser Sintering of Ti–6Al–4V,” Materials & Design, Vol. 31, No. 8, 2010, pp. 3982-3988.
[8] D. D. Gu and Y. F. Shen, “Direct Laser Sintered WC- 10Co/Cu Nanocomposites,” Applied Surface Science, Vol. 254, No. 13, 2008, pp. 3971-3978. doi:10.1016/j.apsusc.2007.12.028
[9] D. D. Gu and Y. F. Shen, “WC–Co Particulate Reinforcing Cu Matrix Composites Produced by Direct Laser Sintering,” Materials Letters, Vol. 60, No. 29-30, 2006, pp. 3664-3668. doi:10.1016/j.matlet.2006.03.103
[10] C. S. Ramesha and C. K. Srinivas, “Friction and Wear Behavior of Laser-Sintered Iron–Silicon Carbide Composites,” Journal of Materials Processing Technology, Vol. 209, No.14, 2009, pp. 5429-5436. doi:10.1016/j.jmatprotec.2009.04.018
[11] A. Simchi and D. Godlinski, “Effect of SiC Particles on the Laser Sintering of Al–7Si–0.3Mg Alloy,” Scripta Materialia, Vol. 59, No. 2, 2008, pp. 199-202. doi:10.1016/j.scriptamat.2008.03.007
[12] D. D. Gu, Y. F. Shen and Z. Lu, “Microstructural Characteristics and Formation Mechanism of Direct Laser- Sintered Cu-Based Alloys Reinforced with Ni Particles,” Materials and Design, Vol. 30, No. 6, 2009, pp. 2099- 2107. doi:10.1016/j.matdes.2008.08.036
[13] A. G??rd, P. Krakhmalev and J. Bergstr?m, “Microstructural Characterization and Wear Behavior of (Fe,Ni)-TiC MMC Prepared by DMLS,” Journal of Alloys and Compounds, Vol. 421, No.1-2, 2006, pp. 166-171.
[14] R. S. Sidhu and N. Chawla, “Three-Dimensional Microstructure Characterization of Ag3Sn Intermetallics in Sn- Rich Solder by Serial Sectioning,” Materials Characterization, Vol. 52, No. 8 ,2004, pp. 225-230. doi:10.1016/j.matchar.2004.04.010
[15] M. A. Dudek and N. Chawla, “Three-Dimensional (3D) Visualization of Reflow Porosity and Modeling of Deformation in Pb-Free Solder Joints,” Materials Characterization, Vol. 59, No. 4, 2008, pp. 1364-1368. doi:10.1016/j.matchar.2007.10.008
[16] A. J. Kubis, G. J. Shiflet and R. Hull, “Focused Ion-Beam Tomography,” Metallurgical and Materials Transactions, Vol. 35, No. 7, 2004, pp. 1935-1943. doi:10.1007/s11661-004-0142-4
[17] D. R. P. Singh, N. Chawla, and Y.-L. Shen, “Focused Ion Beam (FIB) Tomography of Nanoindentation Damage in Nanoscale Metal/Ceramic Multilayers,” Materials Characterization, Vol. 61, No. 4, 2010, pp. 481-488. doi:10.1016/j.matchar.2010.01.005
[18] F. Lasagni, A. Lasagni, E. Marks, C. Holzapfel, F. Mucklich and H. P. Degischer, “Three-Dimensional Characterization of ‘as-cast’ and Solution-Treated AlSi12(Sr) Alloys by High-Resolution FIB Tomography,” Acta Materialia, Vol. 55, No. 11, 2007, pp. 3875-3882. doi:10.1016/j.actamat.2007.03.004
[19] J. Baruchel, P. Bleuet, A. Bravin, P. Coan, E. Lima, A. Madsen, et al., “Advances in Synchrotron Hard X-Ray Based Imaging,” CR Physique, Vol. 9, No. 5-6, 2008, pp. 624-641. doi:10.1016/j.crhy.2007.08.003
[20] J. H. Kinney and M. C. Nichols, “X-Ray Tomographic Microscopy (XTM) Using Synchrotron Radiation,” Annual Review of Materials Science, Vol. 22, 1992, pp. 121- 152. doi:10.1146/annurev.ms.22.080192.001005
[21] R. Cancedda, M. Mastrogiacomo, G. Bianchi, A. Derubeis, A. Muraglia and R. Quarto, “Bone Marrow Stromal Cells and the Use in Regenerating Bone,” Novartis Foundation Symposium, Vol. 249, 2003, pp. 133-143.
[22] M. Marcacci, E. Kon, S. Zaffagnini, R. Giardino, M. Rocca, A. Corsi, A. Benvenuti, P. Bianco, R. Quarto, I. Martin, R. Cancedda, “Reconstruction of Extensive Long Bone Defects in Sheep Using Porous Hydroxyapatite Soinge,” Calcified Tissue International, Vol. 64, No. 1, 1999, pp. 83-90. doi:10.1007/s002239900583
[23] N. Kotobuki, K. Ioku, D. Kawagoe, H. Fujimori, S. Goto and H. Ohgushi, “Observation of Osteogenic Differentiation Cascade of Living Mesenchymal Stem Cells on Transparent Hydroxyapatite Ceramic,” Biomaterials, Vol. 26, No. 7, 2005, pp. 779-785.
[24] E. N. Landis, E. N. Nagy, D. T. Keane, “Microstructure and Fracture in Three Dimensions,” Engineering Fracture Mechanism, Vol. 70, No. 7-8, 2003, pp. 911-925.
[25] M. Weyland and P. A. Midgley “Electron Tomography,” Materials Today, Vol. 7, 2004, pp. 32-40. doi:10.1016/S1369-7021(04)00569-3
[26] M. Salomè, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval- Jeantet, J. Baruchel and P. Spanne, “Synchrotron Radiation Microtomography System for the Analysis of Trabecular Bone Samples,” Medical Physics, Vol. 26, No. 10, 1999, pp. 2194-2204.
[27] M. Dudek, L. Hunter, S. Kranz, J. J. Williams, S. H. Lau and N. Chawla, “Three-Dimensional (3D) Visualization of Reflow Porosity and Modeling of Deformation in Pb- Free Solder Joints,” Materials Characterization, Vol. 61, No. 4, 2009, pp. 433-439. doi:10.1016/j.matchar.2010.01.011
[28] N. Chawla, J. J. Williams, X. Deng, C. McClimon, “Three-Dimensional Characterization and Modeling of Porosity in PM Steel,” International Journal of Powder Metallurgy, Vol. 45, No. 2, 2009, pp. 19-27.
[29] L. Babout, E. Maire, J. Y. Buffiere and R. Fougeres, “Characterization by X-Ray Computed Tomography of Decohesion, Porosity Growth and Coalescence in Model Metal Matrix Composites,” Acta Materialia, Vol. 49, No. 11, 2001, pp. 2055-2063. doi:10.1016/S1359-6454(01)00104-5
[30] A. Borbely, F. F. Csikor, S. Zabler, P. Cloetens and H. Biermann, “Three-Dimensional Characterization of the Microstructure of a Metal–Matrix Composite by Holotomography,” Materials Science and Engineering: A, Vol. 367, Vol. 1-2, 2004, pp. 40-50.
[31] P. Kenesei, H. Biermann and A. Borbely “Structure– Property Relationship in Particle Reinforced Metal-Matrix Composites Based on Holotomography,” Scripta Materialia, Vol. 53, No. 7, 2005, pp. 787-791. doi:10.1016/j.scriptamat.2005.06.015
[32] F. A. Silva, J. J. Williams, B. R. Mueller, M. P. Hentschel, P. D. Portella and N. Chawla, “Three-Dimensional Microstructure Visualization of Porosity and Fe-Rich Inclusions in SiC Particle-Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography,” Metallurgical and Materials Transactions, Vol. 41, No. 8, 2010, pp. 2121-2128. doi:10.1007/s11661-010-0260-0
[33] A. Weck, D. S. Wilkinson, E. Maire and H. Toda, “Visualization by X-Ray Tomography of Void Growth and Coalescence Leading to Fracture in Model Materials,” Acta Materialia, Vol. 56, No. 12, 2008, pp. 2919-2928. doi:10.1016/j.actamat.2008.02.027
[34] H. Toda, S. Yamamoto, M. Kobayashi, K. Uesugi and H. Zhang, “Direct Measurement Procedure for Three-Di- mensional Local Crack Driving Force Using Synchrotron X-Ray Microtomography,” Acta Materialia, Vol. 56, No. 20 ,2008, pp. 6027-6039. doi:10.1016/j.actamat.2008.08.022
[35] N. Chawla, V.V. Ganesh and B. Wunsch, “Three-Dimen- sional (3D) Microstructure Visualization and Finite Element Modeling of the Mechanical Behavior of SiC Particle Reinforced Aluminum Composites,” Scripta Materialia, Vol. 51, No. 2, 2004, pp. 161-165. doi:10.1016/j.scriptamat.2004.03.043
[36] N. Chawla and K. K. Chawla, “Microstructure-Based Modeling of the Deformation Behavior of Particle Reinforced Metal Matrix Composites,” Journal of Materials Science, Vol. 41, No. 3, 2006, pp. 913-925. doi:10.1007/s10853-006-6572-1
[37] N. Chawla, R. S. Sidhu and V. V. Ganesh, “Three-Dimensional Visualization and Micro Structure-Based Modeling of Deformation in Particle-Reinforced Composites,” Acta Materialia, Vol. 54, No. 6, 2006, pp. 1541- 1548. doi:10.1016/j.actamat.2005.11.027
[38] A. R. Boccaccini, G. Ondracek, P. Mazilu and D. Windelberg, “On the Effective Young’s Modulus of Elasticity for Porous Materials: Microstructure Modelling and Comparison between Calculated and Experimental Values,” Journal of the Mechanical Behavior of Materials, Vol. 4, 1993, pp. 119-128. doi:10.1515/JMBM.1993.4.2.119
[39] M. Pavese, M. Valle and C. Badini, “Effect of Porosity of Cordierite Performs on Microstructure and Mechanical Strength of C4 Composites,” Journal of the European Ceramic Society, Vol. 27, 2007, pp. 131-141. doi:10.1016/j.jeurceramsoc.2006.05.080
[40] T. J. Ha, H. H. Park, E. S. Kang, S. Shin and H. H. Cho, “Variations in Mechanical and Thermal Properties of Mesoporous Alumina Thin Films Due to Porosity and Ordered Pore Structure,” Journal of Colloid and Interface Science, Vol. 345, No. 1, 2010, pp. 120-124. doi:10.1016/j.jcis.2010.01.028
[41] Y. H. Li, G. B. Rao, L. J. Rong and Y. Y. Li, “The Influence of Porosity on Corrosion Characteristics of Porous NiTi Alloy in Simulated Body Fluid,” Materials Letters, Vol. 57, No. 2, 2002, pp. 448-451. doi:10.1016/S0167-577X(02)00809-1
[42] http://www.volumegraphics.com/
[43] http://www.elettra.trieste.it/
[44] D. Ulrich, B. Van Rietbergen, A. Laib and P. Ruegsegger, “Load Transfer Analysis of the Distal Radius from in-Vivo High-Resolution CT-Imaging,” Journal of Biomechanics, Vol. 32, No. 8, 1999, pp. 821-828. doi:10.1016/S0021-9290(99)00062-7
[45] A. M. Parfitt et al., “Bone Histomorphometry: Standardization of Nomenclature, Symbols, and Units,” Journal of Bone and Mineral Research, Vol. 2, No. 3, 1987, pp. 595- 610.
[46] C. A. Leon y Leon, “New Perspectives in Mercury Porosimetry,” Advances in Colloid and Interface Science, Vol. 76-77, 1998, pp. 341-372. doi:10.1016/S0001-8686(98)00052-9

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.