Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxida-tive stress in male Wistar rats
Karuna Rasineni, Saralakumari Desireddy
.
DOI: 10.4236/jdm.2011.13010   PDF    HTML     4,813 Downloads   10,220 Views   Citations

Abstract

High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The aim of the present study was to investigate whether Catharanthus roseus (L.) G. Don (Apocynaceae) leaf powder alleviates high-fructose diet-induced insulin resistance and oxidative stress in rats. Adult male Wistar rats of body weight around 200 g were divided into four groups, two of which were fed with standard pellet diet and the other two with high fructose (66%) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to each group of the standard pellet diet fed rats and the high fructose diet fed rats for 60 days. Fructose fed rats (F-group) showed hyperglycemia, hyperinsulinemia, insulin resistance and hyperlipidemia (P < 0.05). C. roseus treatment in fructose fed rats (F+CR-group) prevented the rise in glucose levels by 32.2%, insulin by 46.4%, and impaired insulin sensitivity by 63.6%. C. roseus treatment completely prevented the fructose induced plasma lipid alterations. Regarding liver antioxidant status, oxidative stress was observed in fructose fed rats (F-group), while C. roseus treatment in F+CR-group prevented the fructose induced oxidative stress. Our data indicate the preventive role of C. roseus against fructose-induced insulin resistance and oxidative stress; hence this plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

Share and Cite:

Rasineni, K. and Desireddy, S. (2011) Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxida-tive stress in male Wistar rats. Journal of Diabetes Mellitus, 1, 63-70. doi: 10.4236/jdm.2011.13010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bray, G.A., Nielsen, S.J. and Popkin, B.M. (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition, 9, 537-543.
[2] Gaby, A.R. (2005) Adverse effects of dietary fructose. Alternative Medicine Review, 10, 294-306.
[3] Tordoff, M.G. and Alleva, A.M. (1990) Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. American Journal of Clinical Nutrition, 51, 963-969.
[4] Thorburn, A.W., Storlein, L.H., Jemkins, A.B., Khouri, S. and Kraegen, E.W. (1989) Fructose induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. American Journal of Clinical Nutrition, 49, 1155- 1163.
[5] Reddy, S.S., Karuna, R., Baskar, R. and Saralakumari, D. (2008) Prevention of insulin resistance by ingesting aqueous extract of Ocimum sanctum to fructose-fed rats. Hormone and Metabolic Research, 40, 44-49. doi:10.1055/s-2007-993218
[6] Reaven, G.M. and Banting, L. (1988) Role of insulin resistance in human disease. Diabetes, 37, 1595-1607. doi:10.2337/diabetes.37.12.1595
[7] Faure, P., Rossini, E., Wiernsperger, N., Richard, M.J., Favier, A. and Halimi, S. (1999) An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats. Diabetes, 48, 353-357. doi:10.2337/diabetes.48.2.353
[8] Faure, P., Rossini, E., Lafond, J.L., Richard, M.J., Favier, A. and Halimi, S. (1997) Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets. Journal of Nutrition, 127, 103-107.
[9] Hollenberg, N.K. (2003) Considerations for management of fluid dynamic issues associated with thiazolidine- diones. American journal of medicine, 115, S111-S115. doi:10.1016/j.amjmed.2003.09.018
[10] Ozgen, U., Turkoz, Y., Stout, M., Ozugurlu, F., Pelik, F., Bulut, Y., Aslan, M., Ravindranath, Y. and Savasan, S. (2003) Degradation of vincristine by myeloperoxidase and hypochlorous acid in children with acute lymphoblastic leukemia. Leukocyte Research, 27, 1109-1113. doi:10.1016/S0145-2126(03)00098-5
[11] Nayak, B.S., Lexley, M. and Pinto, P. (2006) Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. BMC Complementary and Alternative Medicine, 6, 1-6. doi:10.1186/1472-6882-6-1
[12] Karuna, R., Ramesh, B., Sreenivasa, S. and Saralakumari, D. (2010) Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats. Pharmacognosy Research, 2, 195-201.
[13] Nammi, S., Boini, M.K., Lodgala, S. and Behara, R.B.S. (2003) The fresh leaves of Catharanthus roseus Linn. Reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complementary and Alternative Medicine, 2, 3-4.
[14] Chattopadhya, R.R. (1999) A comparative evaluation of some blood glucose lowering agents of plant origin. Journal of Ethanopharmacology, 67, 367-369. doi:10.1016/S0378-8741(99)00095-1
[15] Fazil, M.A., Mohammed, S.K., Safiullah, S.G., Sughra, S.M., Rasheed, S.A., Mehboob, S.A. and Ibrahim, M. (2010) Antidiabetic Activity of Vinca rosea Extracts in Alloxan-Induced Diabetic Rats. International Journal of Endocrinology, 1-6.
[16] Singh, S.N., Vats, P., Suri, S., Shyam, R., Kumari, M.M., Ranganathan, S. and Sridharan, K. (2001) Effect of an antidiabetic extract of a Catharanthus roseus on enzymatic activities in streptozotocin induced diabetic rats. Journal of Ethanopharmacology, 76, 269-277. doi:10.1016/S0378-8741(01)00254-9
[17] Rau, O., Wurglics, M., Dingermann, T., Abdel-Tawab, M. and Schubert-Zsilavecz, M. (2006) Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor. Pharmazie, 61, 952-956.
[18] Antia, B.S. and Okokon, J.E. (2005) Effect of leaf juice of Catharnathus roseus Linn on cholesterol, triglyceride and lipoproteins levels in normal rats. Indian Journal of Pharmacology, 37, 401-402.
[19] Yalow, R.S. and Berson, S.A. (1961) Immunoassay of plasma insulin in man. Diabetes, 10, 339.
[20] Pickavance, L.C., Tadayyon, M., Widdowson, P.S., Buck- ingham, R.E. and Wilding, J.P.H. (1999) Therapeutic index for rosiglitazone in dietary obese rats. Separation of efficacy and haemodiluation. British Journal of Pharmacology, 128, 1570-1576. doi:10.1038/sj.bjp.0702932
[21] Utley, H.G, Bernheim, F. and Hochstein, P. (1967) Effect of sulfhydryl reagents on peroxidation in microsomes. Archives of Biochemistry and Biophysics, 118, 29-32. doi:10.1016/0003-9861(67)90273-1
[22] Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S. and Stadtman, E,R. (1990) Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464-478. doi:10.1016/0076-6879(90)86141-H
[23] Ellman, G.L. (1959) Tissue sulphydryl. Archives of Biochemistry Biophysics, 82, 70-77. doi:10.1016/0003-9861(59)90090-6
[24] Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin’s-phenol reagent. Journal of Biological Chemistry, 193, 265-275.
[25] Soon, Y.Y. and Tan, B.K.H. (2002) Evaluation of the hypoglycemic and antioxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singapore Medical Journal, 43, 77-85.
[26] Beers, R.F. and Sizer, J.W. (1952) Spectrophotometric method for measuring breakdown of hydrogen peroxide catalase. Journal of Biological Chemistry, 195, 133-140.
[27] Rotsruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W.G. (1973) Slenium: Biochemical role as a component of glutathione peroxidase. Science, 179, 588-590. doi:10.1126/science.179.4073.588
[28] Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139.
[29] Pinto, R.E. and Bartley, W. (1969) The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochemical Journal, 112, 109-115.
[30] Goldstein, B.J. (2002) Insulin resistance as the core defect in type 2 diabetes mellitus. American Jornal of Cardiology, 90, 3-10. doi:10.1016/S0002-9149(02)02553-5
[31] Kaiyala, K.J., Prigeon, R.L., Kahn, S.E., Woods, S.C. and Schwartz, M.W. (2000) Obesity induced by a high rat diet is associated with reduced brain insulin transport in dogs. Diabetes, 49, 1525-1533. doi:10.2337/diabetes.49.9.1525
[32] Vos, P.D.E., Lefebvre, A.M., Miller, S.G., Guerre-Millo, M., Wong, K., Saladin, R., Hamann, L.G., Staels, B., Briggs, M.R. and Auwerx, J. (1996) Thiozolidinediones repress ob gene expression in rodents via activation of peroxisome proliferators-activated receptor gamma. Journal of Clinical Investigation, 98, 1004-1009. doi:10.1172/JCI118860
[33] Randle, T.J. (1998) Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes Metabolism Review, 14, 263-283. doi:10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C
[34] Kelly, G.L., Allan, G. and Azhar, S. (2004) High dietary fructose induces a hepatic stress response resulting in cholesterol and lipid dysregulation. Endocrinology, 145, 548-555. doi:10.1210/en.2003-1167
[35] Evans, J.L., Goldfine, I.D., Maddux, B.A. and Grodsky, G.M. (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 52, 1-8. doi:10.2337/diabetes.52.1.1
[36] Itani, S.I., Ruderman, N.B., Schmieder, F. and Boden, G. (2005) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein-kinaseC, and IB-alpha. Diabetes, 51, 2005-2011. doi:10.2337/diabetes.51.7.2005
[37] Kocic, R., Pavlovic, D., Kocic, G. and Pesic, M. (2007) Susceptibility to oxidative stress, insulin resistance, and insulin secretory response in the development of diabetes from obesity. Vojnosanitetski Pregled, 64, 391-397.
[38] Ceriello, A., Giugliano, D., Quatraro, A., Donzella, C., Dipalo, G. and Lefebvre, P.J. (1991) Vitamin E reduction of protein glycosylation in diabetes: New prospect for prevention of diabetic complications? Diabetes Care, 14, 68-72. doi:10.2337/diacare.14.1.68
[39] Datta, K., Sinha, S. and Chattopadhyay, P. (2000) Reactive oxygen species in health and diseases. National Medical Journal of India, 13, 304-310.
[40] Evans, J.L. and Goldfine, I.D. (2000) α-Lipoic acid: A multi-functional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technology and Therapeutics, 2, 401-413. doi:10.1089/15209150050194279

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.