A doublet mechanics model for the ultrasound characterization of malignant tissues

Abstract

Non invasive ultrasound-based imaging systems are being more commonly used in clinical bio-microscopy applications for both ex vivo and in vivo analysis of tissue pathological and physiological states. These modalities usually employ high-frequency ultrasound systems to overcome spatial resolution limits of conventional clinical diagnostic approaches. Biological tissues are non continuous, non homogeneous and exhibit a multiscale organization from the sub-cellular level (£1 mm) to the organ level (³1 cm). When the ultrasonic wavelength used to probe the tissues becomes comparable with the tissue's microstructure scale, the propagation and reflection of ultrasound waves cannot be fully interpreted employing classical models developed within the continuum assumption. In this study, we present a multiscale model for analyzing the mechanical response of a non-continuum double-layer system exposed to an ultrasound source. The model is developed within the framework of the Doublet Mechanics theory and can be applied to the non-invasive analysis of complex biological tissues.

Share and Cite:

Gentile, F. , Sakamoto, J. , Righetti, R. , Decuzzi, P. and Ferrari, M. (2011) A doublet mechanics model for the ultrasound characterization of malignant tissues. Journal of Biomedical Science and Engineering, 4, 362-374. doi: 10.4236/jbise.2011.45046.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Rajadhyaksha, M., Grossman, M., Esterowitz, D. and Webb, R.H. (1995) In vivo confocal scanning laser microscopy of human skin-melanin provides strong contrast. Journal of Investigative Dermatology, 104, 946-952. doi:10.1111/1523-1747.ep12606215
[2] Cross, S.E., Jin, Y.S., Rao, J. and Gimzewski, J.K. (2007) Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2, 780-783. doi:10.1038/nnano.2007.388
[3] Ellegala, D.B., Poi, H.L., Carpenter, J.E., Klibanov, A.L., Kaul, S., Shaffrey, M.E., Sklenar, J. and Lindner, J.R. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation, 108, 336-341. doi:10.1161/01.CIR.0000080326.15367.0C
[4] Foster, F.S., Pavlin, C.J., Lockwood, G.R., Ryan, L.K., Harasiewicz, K.A., Berube, L. and Rauth, A.M. (1993) Principles and applications of ultrasound backscatter microscopy. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 40, 608-617. doi:10.1109/58.238115
[5] Othman, S.F., Xu, H.H., Royston, T.J. and Magin, R.L. (2005) Microscopic magnetic resonance elastography (μMRE). Magnetic Resonance in Medicine, 54, 605-615. doi:10.1002/mrm.20584
[6] Foster, F.S., Pavlin, C.J., Harasiewicz, K.A., Christopher, D.A. and Turnbull, D.H. (2000) Advances in ultrasound biomicroscopy. Ultrasound in Medicine and Biology, 26, 1-27. doi:10.1016/S0301-5629(99)00096-4
[7] Tearney, G.J., Brezinski, M.E., Bouma, B.E., Boppart, S.A., Pitris, C., Southern, J.F. and Fujimoto, J.G. (1997) In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276, 2037-2039. doi:10.1126/science.276.5321.2037
[8] Sonn, G.A., Jones, S.N.E., Tarin, T.V., Du, C.B., Mach, K.E., Jensen, K.C. and Liao, J.C. (2009) Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. Journal of Urology, 182, 1299-1305. doi:10.1016/j.juro.2009.06.039
[9] Paradiso, A. et al. (2004) Interobserver reproducibility of immunohistochemical HER-2/neu evaluation in human breast cancer: The real-world experience. International Journal of Biological Markers, 19, 147-154.
[10] Verkooijen, H. et al. (2003) Interobserver variability be- tween general and expert pathologists during the histo- pathological assessment of large-core needle and open biopsies of non-palpable breast lesions. European Jour- nal of Cancer, 39, 2187-2191. doi:10.1016/S0959-8049(03)00540-9
[11] Schlemper, R. et al. (2000) Differences in diagnostic cri- teria for esophageal squamous cell carcinoma between Japanese and Western pathologists. Cancer, 88, 996-1006. doi:10.1002/(SICI)1097-0142(20000301)88:5<996::AID-CNCR8>3.0.CO;2-Q
[12] Fercher, A.F., Drexler, W., Hitzenberger, C.K. and Lasser, T. (2003) Optical coherence tomography-principles and applications. Reports on Progress in Physics, 66, 239- 303. doi:10.1088/0034-4885/66/2/204
[13] Benveniste, H., Hedlund, L.W. and Johnson, G.A. (1992) Mechanism of detection of acute crebral-ischemia in rats by diffusion-weighted magnetic-resonance microscopy. Stroke, 23, 746-754.
[14] McDonald, D.M. and Choyke, P.L. (2003) Imaging of angiogenesis: From microscope to clinic. Nature Medicine, 9, 713-725. doi:10.1038/nm0603-713
[15] Louie, A.Y., Huber, M.M., Ahrens, E.T., Rothbacher, U., Moats, R., Jacobs, R.E., Fraser, S.E. and Meade, T.J. (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nature Biotechnology, 18, 321- 325. doi:10.1038/73780
[16] Sokolov, S.J. (1935) Ultrasonic oscillations and their applications. Technical Physics of the USSR, 2, 522-534.
[17] Sherar, M.D., Noss, M.B. and Foster, F.S. (1987) Ultrasound backscatter microscopy images the internal structure of living tumour spheroids. Nature, 330, 493-495. doi:10.1038/330493a0
[18] Gussenhoven, E.J., Essed, C.E., Lancee, C.T., Mastik, F., Frietman, P., Vanegmond, F.C., Reiber, J., Bosch, H., Vanurk, H., Roelandt, J. and Bom, N. (1989) Arterial wall characteristics determined by intravascular ultrasound imaging: An in vitro study. Journal of the American College of Cardiology, 14, 947-952. doi:10.1016/0735-1097(89)90471-3
[19] Pavlin, C.J., Harasiewicz, K., Sherar, M.D. and Foster, E.S. (1991) Clinical use of ultrasound biomicroscopy. Ophthalmology, 98, 287-295.
[20] Turnbull, D.H., Starkoski, B.G., Harasiewicz, K.A., Semple, J.L., From, L., Gupta, A.K., Sauder, D.N. and Foster, F.S. (1995) A 40-100 MHz B-scan ultrasound backscatter microscope for skin imaging. Ultrasound in Medicine and Biology, 21, 79-88. doi:10.1016/0301-5629(94)00083-2
[21] Viren, T., Saarakkala, S., Kaleva, E., Nieminen, H.J., Jurvelin, J.S. and Toyras, J. (2009) Minimally invasive ultrasound method for intra-articular diagnostics of Cartilage degeneration. Ultrasound in Medicine and Biology, 35, 1546-1554. doi:10.1016/j.ultrasmedbio.2009.04.004
[22] Kurjak, A., Pooh, R.K., Merce, L.T., Carrera, J.M., Sali- hagic-Kadic, A. and Andonotopo, W. (2005) Structural and functional early human development assessed by three-dimensional and four-dimensional sonography. Fertility and Sterility, 84, 1285-1299. doi:10.1016/j.fertnstert.2005.03.084
[23] Passmann, C. and Ermert, H. (1996) A 100-MHz ultrasound imaging system for dermatologic and ophthalmologic diagnostics. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 43, 545-552. doi:10.1109/58.503714
[24] Celermajer, D.S. et al. (1992) Noninvasive detection of endothelias dysfunction in children and adults at risk of atherosclerosis. Lancet, 340, 1111-1115. doi:10.1016/0140-6736(92)93147-F
[25] Vogt, M. and Ermert, H. (2005) Development and evaluation of a high-frequency ultrasound-based system for in vivo strain imaging of the skin. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 52, 375-385. doi:10.1109/TUFFC.2005.1417260
[26] Cohn, N.A. et al. (1997) An elasticity microscope. 1. Methods. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 44, 1304-1319. doi:10.1109/58.656634
[27] Liu, D. and Ebbini, E.S. (2008) Viscoelastic property measurement in thin tissue constructs using ultrasound. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55, 368-383. doi:10.1109/TUFFC.2008.655
[28] de Korte, C.L. et al. (2000) Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circula- tion, 102, 617-623.
[29] Liu, J. and Ferrari, M. (2003) A discrete model for the high frequency elastic wave examination on biological tissue. Computer Modeling in Engineering and Sciences, 4, 421-430.
[30] Liu, J. and Ferrari, M. (2002) Mechanical spectral signatures of malignant disease? A small-sample, comparative study of continuum vs. nano-biomechanical data analysis. Disease Markers, 18, 175-183.
[31] Sakamoto, J.H. (2005) Molecular analysis of breast cancer utilizing tumor targeting ultrasound mechanical contrast agents. Thesis presented in partial fulfillment of the requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University, The Ohio State University, Columbus.
[32] Sakamoto, J.H., Gentile, F., Xie, B., Wang, L., Decuzzi, P., Rokhlin, S.I. and Ferrari, M. (2005) Nanomechanics and tissue pathology. In: Lee, A.P. and Lee, J.L., Eds., BioMEMS and Biomedical Nanotechnology, Vol. I: Prospectus, Biological and Biomedical Nanotechnology. Springer, New York.
[33] B?ttger, H (1983) Principles of the theory of lattice dy- namics, Physik-Verlag, Weinheim.
[34] Green, A.E. (1965) Micromaterials and multi-polar con- tinuum mechanics. International Journal of Engineering Science, 3, 533-537. doi:10.1016/0020-7225(65)90033-9
[35] Edelen, D.G.B. (1976) Non local field theories. Con- tinuum Physics, Academic Press, New York.
[36] Kunin, I.A. (1982) Elastic media with microstructure. I. One-dimensional models. Springer Series in Solid-State Sciences, Springer-Verlag, Berlin.
[37] Ferrari, M. (2000) Nanomechanics, and biomedical nanomechanics: Eshelby’s inclusion and inhomogeneity problems at the discrete/continuum interface. Biomedi- cal Microdevices, 2, 272-281.
[38] Ferrari, M., Granik, V.T., Imam, A. and Nadeau, J. (1997) Advances in doublet mechanics. Springer, Heidelberg.
[39] Granik, V.T. and Ferrari, M. (1993) Microstructural mechanics of granular materials. Mechanics of Materials, 15, 301-322. doi:10.1016/0167-6636(93)90005-C
[40] Sakamoto, J.H., Smith, B.R., Xie, B., Rokhlin, S.I., Lee, S.C. and Ferrari, M. (2005) The molecular analysis of breast cancer utilizing targeted nanoparticle based ultra- sound contrast agents. Technology in Cancer Research & Treatment, 4, 627-636.
[41] Williams, A. (2003) Transdermal and topical drug de- livery: From theory to clinical practice. Pharmaceutical Press, London.
[42] Zong, X.L., Laine, A.F. and Geiser, E.A. (1998) Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing. IEEE Transactions on Medical Imaging, 17, 532-540. doi:10.1109/42.730398
[43] Lehmann, M. (1998) Statistical theory of two-wave speckle interferometry and its application to the optimi- zation of deformation measurements. Thèse Ecole Polytechnique Fédérale de Lausanne EPFL, No. 1797.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.